
Graph Relearn Network: Reducing Performance Variance and
Improving Prediction Accuracy of Graph Neural Networks
Zhenhua Huanga,b,c,1, Kunhao Lia,1, Yihang Jianga, Zhaohong Jiaa,∗, Linyuan Lvb,c,∗ and Yunjie Mac,d

aAnhui University, Hefei, 230039, China
bUniversity of Science and Technology of China, Hefei, 230026, China
cInstitute of Dataspace, Hefei Comprehensive National Science Center, Hefei, 230088, China
dHefei University of Technology, Hefei, 230009, China

A R T I C L E I N F O
Keywords:
Graph Neural Networks
Prediction Stability
Rewrite Mechanism
Node Classification

Abstract
Recent studies have shown that the predictive performance of graph neural networks (GNNs) is
inconsistent and varies across different experimental runs, even with identical parameters. The
prediction variability limits GNNs’ applicability, and the underlying reasons remain unclear. We
identified a key factor contributing to this issue: the oscillation of the predicted classes of some
nodes during GNN training. To address this problem, we propose a novel framework, known as Graph
Relearn Network (GRN), designed to reduce prediction variance by iteratively refining the predictions
of unstable nodes. The GRN framework operates in two phases: pre-predict and relearn. During the
pre-predict phase, a graph-dense encoder is trained to pre-predict the node categories. In the relearn
phase, the model intensively focuses on the unstable nodes to optimize the predictions. Extensive
experiments on ten graph datasets demonstrate that the GRN significantly enhances the performance
stability of GNNs (with std. reduced by up to 75%), and achieves state-of-the-art performance in
prediction accuracy (increased by up to 11.97%). GRN improves the performance stability of GNNs
by mitigating the disruptions caused by unstable nodes and enhances the prediction accuracy in node
classification tasks.

1. Introduction
Graph neural networks (GNNs) [1] have been exten-

sively applied in numerous domains such as knowledge
representation [2], text classification [3, 4], traffic prediction
[5], recommendation systems [6, 7], and anomaly detection
[8]. Classic and advanced GNNs include GCN [9], GAT
[10], GIN [11], LightGCN [12], UniMP [13], FusedGAT
[14], ASDGN [15], and RAHG [16], etc. These models pre-
dominantly follow the message-passing framework [17, 18].
Current research primarily focuses on developing new meth-
ods to enhance node or graph representations [13, 14, 19],
explain GNN predictions [20, 21, 22, 23, 24], and improve
the robustness of GNNs [25, 26, 27]. However, recent studies
have revealed that GNNs are susceptible to attacks [28, 26],
leading to significant performance degradation when graph
structures are manipulated. Several approaches have been
proposed for enhancing the robustness of GNNs [29, 30,
25, 27]. Despite these studies, the current literature lacks
a comprehensive understanding of the underlying factors
that contribute to GNN performance instability. In addition,
previous studies have primarily reported the average per-
formance and standard variance of GNNs [31, 10, 11, 14],
present considerable performance variances or instability
compared to traditional machine learning approaches [32,
33]. This phenomenon is evident even under consistent

∗Corresponding Authors
zhhuangscut@gmail.com (Z. Huang); kunhomlihf@gmail.com (K. Li);

yihangjiangahu@gmail.com (Y. Jiang); zhjia@mail.ustc.edu.cn (Z. Jia);
linyuan.lv@ustc.edu.cn (L. Lv); ma.yunjie@foxmail.com (Y. Ma)

ORCID(s): 0000-0003-3178-9721 (Z. Huang); 0000-0002-4952-0969 (K.
Li); 0000-0001-6607-7025 (Z. Jia)

1Equal Contributions

parameter settings. For example, in an experiment involving
100 runs on the Airports (USA) dataset as illustrated in
Fig. 1, traditional machine-learning methods such as SVM
showed consistent accuracy. The trivial deep neural network
(DNN), a multilayer perceptron, exhibited slight fluctuations
in prediction performance. However, the graph neural net-
work, specifically GCN, demonstrated significant variance
in performance despite utilizing graph structure to achieve
the highest prediction accuracy. The accuracy fluctuated
between 48.12% and 54.6%. Similarly, on the Cora dataset,
GCN’s accuracy varied from 85.84% to 88.66%. This per-
formance instability in node classification has not been
adequately addressed in previous studies and the underlying
causes remain unclear [34].

By visualizing and analyzing the training process and
predictions of GNNs, we identified a crucial factor that
affects the stability of GNN representations. As depicted in
Fig. 2, during the GCN training on the Cora dataset [9],
the predicted label of node 2186 fluctuated between the
blue and green classes. Similarly, the central node 2276 was
classified as green in the 167th epoch, changed to orange in
the 172nd epoch, and finally transitioned to blue in the 223rd
epoch. These shifts in the predicted classes (referred to as
unstable nodes) during the training process contribute to the
performance instability of GNN predictions. Our statistical
analysis further indicated that the majority of these unstable
nodes were typically located at the periphery and junctions
of clusters or communities within the graph.

Our analysis shows that unstable nodes account for ap-
proximately 5% to 15% of the total nodes in models such
as ChebNet, GCN, GAT, FusedGAT, and ASDGN. Cur-
rent message-passing-based GNNs are affected by unstable

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 1 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

Fig. 1: Accuracy distribution of different models after 100 trials
on the Airports (USA) dataset.

nodes, which can compromise their prediction accuracy.
However, these models do not effectively utilize histori-
cal prediction data to address the issue of unstable nodes
during each training epoch. To overcome this challenge,
we developed a relearn mechanism inspired by the rewrite
mechanism [35]. Originally designed to eliminate incon-
sistent words from a generated response prototype and to
rewrite them to align with a specific personality, we adapt
this concept for node classification to prioritize inconsistent
nodes and enhance their representations for consistent pre-
dictions over time. This approach is similar to the sample
reweighting strategies in machine learning, in which less
reliable samples are assigned more weight to enhance their
prediction accuracy [36].

Building on this concept, we introduce the Graph Re-
learn Network (GRN), a novel framework consisting of two
alternating training phases: pre-predict and relearn. In the
pre-predict phase, a graph-dense encoder (GDE) is trained
to predict the node classes. We specifically design a graph-
dense block (GDB) to learn node representations and mit-
igate the over-smoothing issue [1] in GNNs, inspired by
dense network architectures [37]. However, some predic-
tions from the pre-predict phase may still be faulty and
require correction during the relearn phase.

In the relearn phase, an unstable node detector based on
spectral clustering is employed to identify unstable nodes
in the pre-predict phase. We incorporate a probability walk
based on the nodes’ degree to sample stable nodes and
balance classes. To improve the predictive consistency of
central nodes during training, we concentrate on stabilizing
the predictions of volatile nodes within their local structure
and introduce a neighbor supporter. The primary objective
of this supporter is to improve the learning of the local node
structure and representation.

By decreasing the proportion and influence of unsta-
ble nodes, our model significantly enhances the prediction
stability of GNNs. Furthermore, the prediction accuracy
of the GRN is markedly improved. Extensive experiments

demonstrate that the instability of GNNs notably affects their
prediction accuracy.

The main contributions of this study are as follows:
• We have identified a primary cause of prediction in-

stability in GNNs: the oscillation of predicted node
classes during training.

• We propose a novel framework, the graph relearn
network (GRN), to improve the performance insta-
bility of GNNs. In the GRN, the relearn phase is
designed to correct the pre-predictions of the graph
neural network. Moreover, GRN alleviates the skip-
ping phenomenon of the predicted node classes.

• The GRN considerably enhances the performance sta-
bility of GNNs by up to 75% on node classification
tasks, and the prediction accuracy is also increased by
up to 11.97% compared to strong baselines in exten-
sive experiments on ten real-world graph datasets 2.

The remainder of this paper is organized as follows.
In Section 2, we review related studies on the design of
GNN, GNN stability, and rewrite mechanism. Section 3
introduces the node classification symbols that appear in this
paper and explains the reason for the unstable prediction
phenomenon. The framework of the GRN is introduced in
detail in Section 4. Extensive experiments in Section 5 verify
the performance of GRN and baselines. Finally, Section 6
summarizes this study.

2. Related Works
2.1. Designing of Graph Neural Networks

The concept of graph neural networks, which dates back
to 2009, was designed to process data represented in graph
formats [38]. Research in this field has increased recently
[39, 40, 1]. Broadly, GNN research can be categorized into
two broad streams. The first focuses on applying GNNs
to solve diverse problems, such as knowledge representa-
tion, text generation, traffic forecasting, recommendation
systems, molecular generation, and action recognition [2,
3, 5, 12, 41, 42, 43, 44], etc. The second stream focuses
on the fundamental theories and architectures of GNNs
[45, 9, 10, 46, 13, 47] etc. ChebNet [45] uses graph spec-
tral and Chebyshev polynomials to learn features of graph-
format data. GCN [9] simplifies the ChebNet approach by
using feature propagation to aggregate adjacency informa-
tion of nodes, enhancing computational efficiency. GAT
[10] dynamically weights the significance of each node’s
neighbors, significantly improving node classification per-
formance. GraphSage [48] extends GCN into an inductive
framework that can predict unseen nodes by leveraging
sampled neighborhood functions. Shi et al. [13] proposed a
novel unified message-passing model (UniMP) that incor-
porates feature and label propagation in both the training

2The code link has released in https://github.com/PreckLi/Graph-
Relearn-Network

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 2 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

Fig. 2: Phenomenon of the predicted labels skip between classes in Cora. Nodes with the same color indicate the same class.

and inference phases. GPS [49] represents a scalable graph
Transformer with linear complexity that supports multiple
types of encodings and enhances model adaptability. The
anti-symmetric deep graph network (ASDGN) [15] offers
a framework for stable and non-dissipative GNN design,
inspired by ordinary differential equations to preserve the
long-range information between nodes.

However, an analysis of the average accuracy and stan-
dard deviation reported in these previous studies revealed
that the performance of GNNs varies significantly across
different experimental runs. Few studies have addressed or
discussed the phenomenon of performance instability in
GNNs, and they have not attempted to mitigate its effects.
Ideally, a more effective GNN should consistently deliver
stable performance and achieve higher accuracy with re-
duced variability.
2.2. Stability of Graph Neural Networks

Most studies on stability have focused on the robust-
ness of deep neural networks to the disturbance of exter-
nal noise. Zheng et al. [50] presented a general stability
training method designed to fortify deep networks against
minor input distortions resulting from common types of
image processing. For graph robustness, Wang et al. [51]
analyzed the stability of convolutional neural networks on
the relative perturbation of Laplace-Beltrami operators to
understand the stability of a GNN on large graphs. Li et
al. [25] introduced an unsupervised framework designed to
refine the graph structure, substantially boosting the robust-
ness of the vanilla GCN while maintaining the same level of
computational complexity. Kenlay et al. [30] established a
clear upper limit, demonstrating that graph neural networks

maintain their stability when rewiring occurs among high-
degree nodes. Song et al. [27] proposed a general framework
for graph neural networks, which lays the foundation for a
new class of robust GNNs. Arghal et al. [26] limited the
frequency response of GNN filter banks, offering PAC-style
guarantees on GNN stability based on scenario optimization
results. Zhao et al. [52] explored GNNs based on different
neural flows, focusing on how these relate to several stabil-
ity concepts, including BIBO stability, Lyapunov stability,
structural stability, and conservative stabilities. Dong et al.
[53] proposed a novel approach to enhance the expressiv-
ity of GNNs through graph canonization, demonstrating a
trade-off between expressivity and stability, and introducing
universal graph canonization as a potential solution.

However, the type of instability in prediction accuracy
discussed in this study differs from the issues addressed in
the above works. It is crucial to examine the performance
stability because deploying an unstable model is challenging
in real-world applications, and addressing this instability
could significantly impact the prediction accuracy of GNNs.
2.3. Rewrite Mechanism

Ren et al. [36] introduced a new meta-learning algo-
rithm that adjusts the weights of the training samples ac-
cording to their gradient directions. This approach signif-
icantly improves the performance in scenarios with class
imbalances and corrupted labels, particularly when only
a limited quantity of clean validation data is accessible.
Elgohary et al. [54] presented the concept of rewriting for the
question-in-context task, where a context-dependent ques-
tion is transformed into a self-contained one with the same
answer, based on the historical context of a conversation.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 3 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

TABLE I
NOTATIONS IN GRN.

Symbols Definitions or descriptions

G A general graph
𝑉 Node set
𝑃 Node predictions during 𝐸 epochs

𝐹𝑖𝑛, 𝐹ℎ𝑖𝑑 , 𝐹𝑐 Feature dimension of input, hidden, classes
𝑉𝑢, 𝑉𝑠𝑡 Unstable node set, sampled stable neighbors
𝑉𝑠𝑝 Sampled node set
𝑟 Sample ratio in sampler

𝑁 , 𝑁𝑠 Number of nodes and sampled nodes
𝑍, 𝑍̃ Output embedding of GDE and the supporter
𝑌 Label of nodes

𝑝, 𝑟 Loss functions in pre-predict and relearn phases

Song et al. [35] proposed a powerful framework to avoid
the generation of inconsistent persona words during text
generation. The generate-delete-rewrite mechanism deletes
inconsistent words from a generated response prototype
and further rewrites it to a personality-consistent one. Pon-
nusamy et al. [55] proposed a self-learning system for large-
scale conversational AI agents. The method employs an
absorbing Markov chain model for collaborative filtering
and utilizes a guardrail rewrite selection mechanism that
assesses these corrections based on feedback friction data.
AFR [56] is a rapid approach for modeling updating, aimed
at minimizing the dependence on non-essential features. It
modifies the final layer of a conventionally trained ERM base
model using a weighted loss. This adjustment prioritizes
instances where the ERM model underperforms, effectively
increasing focus on the minority group without requiring
explicit group labels. However, the rewrite mechanism is
unsuitable for GNNs; thus, we design a relearn mechanism
to support and correct the predictions of GNNs and prevent
nodes from skipping between classes.

3. Node Classification Task
A general graph is represented by 𝐺 = (𝑉 ,𝐴,𝑋), where

𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑁} denotes the node set, 𝐴 ∈ ℝ𝑁×𝑁

is the adjacency matrix, and 𝑋 ∈ ℝ𝑁×𝐹𝑖𝑛 is the original
features of the nodes. 𝑃 ∈ ℝ𝑁×𝐸 captures node predictions
over the most recent 𝐸 epochs. 𝑉𝑢 = {𝑣𝑢1, 𝑣𝑢2,… , 𝑣𝑢𝑛} and
𝑉𝑠𝑝 = {𝑣𝑠𝑝1, 𝑣𝑠𝑝2,… , 𝑣𝑠𝑝𝑛} denote the unstable nodes set
and sampled nodes set, respectively.

To predict the labeling task of a node (i.e., the node
classification task), the set of node labels is represented as
𝑌𝐿. The labeled and unlabeled node sets from 𝑉 can be ex-
pressed as𝑉𝐿 = {𝑣𝑙1,⋯ , 𝑣𝑙𝑛} and𝑉𝑈𝐿 = {𝑣𝑢𝑙1,⋯ , 𝑣𝑢𝑙𝑛}.The
goal of the node classification task is to leverage the graph
𝐺 and the set of labeled nodes 𝑉𝐿 to train the GNN, which
facilitates the prediction of classes for the unlabeled nodes
in 𝑉𝑈𝐿. The symbols used in this paper along with their
definitions and descriptions are summarized in Table I.

4. Graph Relearn Network
The framework of GRN is shown in Fig. 3. In the pre-

predict phase, the graph-dense encoder (GDE) is trained on
the graph data to generate node pre-predictions. We record
the node classifications from the last 𝐸 epochs after GDE
convergence and store them in 𝑃 , which is utilized by a
detector in the relearn phase.

During the relearn phase, the detector encodes the node
predictions into a binary pulse matrix 𝑃 ′ using the latest 𝐸
predictions. 𝑃 ′ captures the changes in the node prediction,
and a spectral clustering method is then employed to identify
the unstable nodes 𝑉𝑢. To ensure class balance and enhance
the representativeness of negative samples, sampling strate-
gies are implemented. We adopt a degree probability mech-
anism for negative sampling to produce stable neighbors 𝑉𝑠𝑡around 𝑉𝑢. The sampled set 𝑉𝑠𝑝 comprises 𝑉𝑢 and 𝑉𝑠𝑡. In
the relearning phase, 𝑉𝑠𝑝 is fed into a neighbor supporter
that leverages the local neighbor information to reinforce the
evidence of nodes belonging to the same class.

The pre-predict and relearn phases are trained alter-
nately. The framework of the GRN is presented in Algorithm
2.
4.1. Pre-Predict Phase

The pre-predict phase includes the GDE and its training
process. The predictions in this phase are intermediate re-
sults of GRN.
4.1.1. Graph Dense Encoder

In the pre-predict phase, a graph-dense encoder (GDE)
is used to train node representations motivated by DenseNet
[37] and ResNet [57]. A GDE includes multiple graph-dense
blocks (GDBs). A GDB has one or multiple graph-dense
modules (GDMs). Following GAT [10], a GDM in GDB is
referred to as a head. We stack multi-head GDM in a GDB.
The main structure of GDB is shown in Fig. 4. To learn
structure features and prevent the node representations of
the model from decaying effectively, we employ a dense-net
structure to connect features between the GDB layers and
input node features. This combination allows the integrated
nodes to retain more information and preserve their differ-
ences, thereby mitigating the issue of over-smoothing. The
design of the GDB amplifies feature differentiation between
nodes while enabling the GRN to learn with minimal infor-
mation loss, facilitating subsequent detection and sampling
of unstable nodes.

The convolution operations in the GDM are formulated
as follows:

𝑋̂𝑙+1
𝑘 = 𝜎(𝐿𝑎𝑝𝑋̂𝑙𝑘 +𝑋𝑡𝑅𝑒𝑠𝑘 + 𝑋̂𝑙𝑘) (1)

where 𝐿𝑎𝑝 = 𝐷 − 𝐴 is the Laplacian matrix, and 𝐷
and 𝐴 are the degree and adjacency matrix of the nodes,
respectively. 𝑋𝑡 ∈ ℝ𝑁×𝐹𝑖𝑛 is the input feature of the 𝑡𝑡ℎ
block, where 𝐹𝑖𝑛 is the dimension size. 𝑋̂𝑙 ∈ ℝ𝑁×𝐹𝑜𝑢𝑡 is
the input feature of 𝑙𝑡ℎ the GDM, where 𝐹𝑜𝑢𝑡 is the output
dimension size. 𝑋̂1 is set as 𝑋𝑡. 𝑅𝑒𝑠𝑘 ∈ ℝ𝐹𝑖𝑛×𝐹𝑜𝑢𝑡 , 𝑘 ∈
ℝ𝐹𝑜𝑢𝑡×𝐹𝑜𝑢𝑡 , and 𝑘 ∈ ℝ𝐹𝑜𝑢𝑡×𝐹𝑜𝑢𝑡 are the residual weight,

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 4 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

Fig. 3: Framework of the GRN. The parameters of GDE are shared in the pre-predict and relearn phases.

dense weight, and shared weight matrix of 𝐻𝑒𝑎𝑑𝑘 (a GDM),
respectively. Before the first graph convolution layer, a linear
layer is applied to transform the dimension of 𝑋𝑡 from 𝐹𝑖𝑛to 𝐹𝑜𝑢𝑡.The output of a GDB is:

𝑋𝑡+1 =

∑

𝑘=1
𝑋̂𝐿

𝑘 (2)

We adopt the sum pool to stack the outputs of several
heads and obtain the output of the GDB, where  is the
number of heads and 𝐿 is the depth of a graph-dense layer.
4.1.2. Training of Pre-Predict Phase

In the pre-predict phase, we train a graph-dense encoder
(GDE) with two graph-dense blocks (GDBs). The output
features 𝑍 ∈ ℝ𝑁×𝐶 of the GDE are as follows:

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐺𝐷𝐵2(𝑅𝑒𝐿𝑈 (𝐺𝐷𝐵1(𝑋,𝐴)), 𝐴)) (3)
where 𝐶 is the number of node classes.

The layer of GDB can also be adjusted to four or six
layers, etc. The GDE can also be replaced by other graph
neural networks such as GCN, GAT, etc. The loss function
is cross-entropy for the pre-predict phase, which is computed
as:

𝑝 = −
∑

𝑖∈𝑉𝐿

𝐶
∑

𝑐=1
𝑌𝑖𝑐 ln𝑍𝑖𝑐 (4)

4.2. Relearn Phase
The relearn phase includes unstable node detection,

negative sampling, and classification optimization using
a neighbor supporter. The phase corrects the error pre-
predictions from the pre-predict phase.

Fig. 4: Structure of a GDB.

4.2.1. Unstable Node Detector
The graph dense encoder (GDE) generates a matrix 𝑃 ∈

ℝ𝑁×𝐸 that captures the predictions of the latest 𝐸 epochs
from the pre-predict phase. The matrix 𝑃 is then utilized
as the input for an unstable node detector, specifically de-
signed to identify nodes that exhibit fluctuations in class
predictions. In the detector, spectral clustering is employed
to categorize nodes based on the variability of their class
assignments. The detector’s internal encoder converts class
variation into a binary signal, where a change in prediction is

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 5 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

encoded as 1, and no change is encoded as 0. Consequently,
the pulse matrix 𝑃 ′ ∈ ℝ𝑁×𝐸 is formalized as follows:

𝑝′𝑖,𝑗 =

{

1 if 𝑝𝑖,𝑗 ≠ 𝑝𝑖,𝑗+1,
0 otherwise. (5)

This binary encoding streamlines the detection of class
skips by converting the prediction history into a sequence of
pulses, where 1 indicates a skip. Subsequently, the pulse ma-
trix𝑃 ′ is used as a feature matrix in the spectral clustering al-
gorithm. Specifically, we derive the similarity matrix 𝑊𝑠 ∈
ℝ𝑁×𝑁 from 𝑃 ′, which plays a crucial role in delineating the
proximities between the encoded prediction behaviors of the
nodes. The similarity matrix 𝑊𝑠 is essential for the spectral
clustering process because it helps to categorize nodes into
clusters that reflect stable and unstable predictions. The
element 𝑤𝑖,𝑗 of the similarity matrix is calculated as follows:

𝑤𝑖,𝑗 =
𝑁
∑

𝑘=1
exp

(

−
|| ′

𝑖 −  ′
𝑘||

2

2𝜎2

)

, (6)

where 𝑃 ′ = { ′
1,⋯ , ′

𝑁}𝑇 . 𝜎2 represents the variance
of the features in the pulse matrix 𝑃 ′, and a summation is
performed over all nodes to establish the full set of pairwise
similarities.

The degree matrix 𝐷𝑠 corresponding to 𝑃 ′ is a diagonal
matrix, where each diagonal element 𝑑𝑖,𝑖 is the sum of
similarities for node 𝑖:

𝑑𝑖,𝑖 =
𝑁
∑

𝑗=1
𝑤𝑖,𝑗 . (7)

The Laplacian matrix of the feature space is defined as
𝐿𝑎𝑝𝑠 = 𝐷𝑠 − 𝑊𝑠. By analyzing the eigenvectors {𝑢1, 𝑢2}associated with the two largest eigenvalues of 𝐿𝑎𝑝𝑠, we
construct a feature matrix  ∈ ℝ𝑁×2. Using the K-Means
algorithm [58], we partition the nodes into two distinct
groups based on their representations in the feature matrix
 : the stable node set 𝑉𝑠𝑡 and the unstable node set 𝑉𝑢. This
clustering helps to identify nodes with stable and unstable
prediction patterns, facilitating targeted interventions to im-
prove model accuracy and stability.
4.2.2. Sampler

The distribution of stable and unstable nodes identified
by the detector is typically unbalanced, and focusing exclu-
sively on unstable nodes during the relearning phase can
introduce bias and inequity. To address this issue, the relearn
phase incorporates a sampling strategy that broadens the
scope of the samples based on the unstable nodes identified
by the detector. Specifically, we employ negative sampling to
select stable nodes from the k-hop neighbors of the unstable
nodes. The approach enables the GRN to develop more
comprehensive stable and unstable characteristics present in
the graph.

Algorithm 1: Degree probability walk sampling.
Input: General graph 𝐺 = (𝑉 ,𝐴), unstable nodes 𝑉𝑢,sample ratio 𝑟
Output: Sampled nodes 𝑉𝑠𝑝.

𝑛𝑒𝑔_𝑛𝑜𝑑𝑒𝑠 = []
𝑉𝑠𝑝 = []
for 𝑣𝑖 in 𝑉𝑢 do
𝑠𝑢𝑏𝑠𝑒𝑡 = subgraph(𝑣𝑖, 𝐴)
𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑟 × len(𝑠𝑢𝑏𝑠𝑒𝑡)
while len(𝑛𝑒𝑔_𝑛𝑜𝑑𝑒𝑠) < 𝑛𝑢𝑚_𝑠𝑎𝑚𝑝𝑙𝑒 do
𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = neighs_d(𝑣𝑖)

𝑛𝑒𝑖𝑔ℎ𝑠_𝑝𝑟𝑜𝑏 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠
sum(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

𝑣𝑝 = Choose(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑠_𝑝𝑟𝑜𝑏)
𝑛𝑒𝑔_𝑛𝑜𝑑𝑒𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑣𝑝)
if 𝑣𝑖 ≠ 𝑣𝑝 then

Set 𝑣𝑖 = 𝑣𝑝
end if

end while
end for
𝑉𝑠𝑝 = Union(𝑉𝑠𝑝, 𝑛𝑒𝑔_𝑛𝑜𝑑𝑒𝑠)
return 𝑉𝑠𝑝

To sample representative nodes effectively, we found
that nodes with higher degrees harbor more structural in-
formation regarding their surroundings or neighbors [59].
The sampler selects stable neighbors based on the degree
probability within a two-hop neighborhood of the central
unstable nodes. The output of the sampler is denoted by
𝑉𝑠𝑝(𝑣𝑠𝑝1, 𝑣𝑠𝑝2,⋯ , 𝑣𝑠𝑝𝑛), which comprises 𝑉𝑢 and their stable
neighbors 𝑉𝑠𝑡. The process is detailed in Algorithm 1, where
𝑛𝑒𝑔_𝑛𝑜𝑑𝑒𝑠 is the set of nodes sampled around the unstable
nodes. The subgraph (𝑣𝑖, 𝐴) is the function that obtains the
two-hop neighbors of 𝑣𝑖, and neighs_d (𝑣𝑖) is the function
that computes the neighbors’ degree of 𝑣𝑖, and Choose
(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑠_𝑝𝑟𝑜𝑏) is the function that selects nodes from
the 𝑠𝑢𝑏𝑠𝑒𝑡 based on the probability of 𝑛𝑒𝑖𝑔ℎ𝑠_𝑑𝑒𝑔𝑟𝑒𝑒. This
method ensures a balanced and informative selection of
nodes for relearning and enhances the overall stability and
accuracy of the model.
4.2.3. Neighbor Supporter

To enhance the prediction consistency of the central
nodes during training and to target the predictions of unsta-
ble nodes within the local structure specifically, we introduce
a component known as the neighbor supporter (supporter)
during the relearn phase. The supporter consists of multiple
support layers (SLs) that leverage k-hop neighbor structures
and features to enhance the prediction accuracy of the cen-
tral node. In addition, the supporter incorporates a mask
matrix 𝑀 , which is crucial for controlling the scope of
aggregation within the sampled sets. This matrix ensures
that the aggregation process remains confined to relevant
neighborhood structures, thereby optimizing the learning

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 6 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

process. The propagation process of a support layer (SL) is
as follows:

𝐻 𝑙+1
𝑐 = 𝐷−1

𝑠 𝑀𝐴𝑘𝑀𝑇𝐷−1
𝑠 𝐻 𝑙

𝑠𝑠 (8)
where 𝐷𝑠 is the degree matrix of the sampled set 𝑉𝑠𝑝, 𝐴𝑘 is
the adjacency matrix of the 𝑘 power, 𝑠 ∈ ℝ𝐹𝑖𝑛×𝐹𝑜𝑢𝑡 denotes
the learnable weights. 𝐻 𝑙

𝑠 ∈ ℝ𝑁𝑐×𝐹𝑖𝑛 is the input matrix in
the 𝑙𝑡ℎ supporter layer (SL) and 𝑀 ∈ ℝ𝑁𝑠×𝑁𝑠 is the mask
matrix of 𝑉𝑠𝑝, which ensures that the source or destination
nodes are included in 𝑉𝑠𝑝. The 𝑚𝑖,𝑗 is expressed as:

𝑚𝑖,𝑗 =

{

1 if 𝑖 ∈ 𝑉𝑠𝑝 𝑜𝑟 𝑗 ∈ 𝑉𝑠𝑝
0 otherwise (9)

Algorithm 2: Framework of GRN.
Data: General graph 𝐺 = (𝐴, 𝑉 ,𝑋).
Result: Representation of nodes 𝑍.

1 Initialize the parameters 𝑘, 𝑅𝑘, 𝑘 of GDE ;
2 while not converged do
3 while epoch in pre-predict do
4 Compute the node representation 𝑍 using

GDE (Eq.(3));
5 Update 𝑘, 𝑅𝑘, 𝑘 using cross-entropy

(Eq.(4));
6 end
7 Obtain the node predictions 𝑃 ;
8 Identify the unstable node set 𝑉𝑢 by the Detector

(Sec.(4.2.1));
9 Determine the sampled node set 𝑉𝑠𝑝 by the

Sampler (Sec.(4.2.2));
10 Initialize the parameters 𝑠 of the Supporter;
11 while epoch in relearn do
12 Recalculate the node representation 𝑍 by

the GDE (Eq.(3));
13 Generate the sampled node representations

𝑍̃ by Supporter (Eq.(10));
14 Update 𝑘, 𝑅𝑘, 𝑘, 𝑠 by the relearn loss

(Eq.(11));
15 end
16 end
17 Return the final node representation 𝑍 from the

GDE;

4.2.4. Training of Relearn Phase
In the relearn phase, the GDE and the supporter are

trained simultaneously. The supporter applies two support
layers (SLs) to predict the categories of the sampled nodes.
The output 𝑍̃ is:

𝑍̃ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝐿2(𝑅𝑒𝐿𝑈 (𝑆𝐿1(𝐻𝑠, 𝐴)), 𝐴)) (10)
where 𝐻𝑠 denotes the features of 𝑉𝑠𝑝.

The relearn loss equation is:

𝑟 = −
∑

𝑖∈𝑉𝐿

𝐶
∑

𝑐=1
𝑌𝑖𝑐 ln𝑍𝑖𝑐 −

∑

𝑖∈𝑉𝑠𝑝

𝐶
∑

𝑐=1
𝑌𝑖𝑐 ln 𝑍̃𝑖𝑐 (11)

where 𝑌𝑐 is the label of the sample set 𝑉𝑠𝑝.
Overall, the training of the GRN involves two separate

and alternating processes: training in pre-predict and train-
ing in relearn.
4.3. Time Complexity

During the training, the time expenditure associated
with the explainable training phase of the Graph Relearn
Networks (GRN) is primarily bifurcated into two distinct
components: the pre-predict phase and relearn phases. The
pre-predict phase predominantly encompasses the Graph
Dense Encoder (GDE), which is meticulously constructed
using  Graph Dense Blocks (GDBs). Consequently, the
temporal complexity of the GDE can be formulated as  ×
{𝑂(|𝐸|×𝐹𝑖𝑛×𝐹ℎ𝑖𝑑)+𝑂(𝐹𝑖𝑛×𝐹ℎ𝑖𝑑)+𝑂(𝐹𝑖𝑛×𝐹ℎ𝑖𝑑)}, which
is simplified to approximately 𝑂( × |𝐸| × 𝐹𝑖𝑛 × 𝐹ℎ𝑖𝑑).The relearn phase integrates the GDE with a bilayer
neighbor supporter. The time complexity attributed to the
neighbor supporter is expressed as 𝑂(|𝐸| × 𝐹𝑖𝑛 × 𝐹ℎ𝑖𝑑). In
summary, the overall time complexity of the GRN’s training
phase is established as 𝑂( × |𝐸| × 𝐹𝑖𝑛 × 𝐹ℎ𝑖𝑑), which is 
times the cost of GCN [9].

5. Experimental Analysis
5.1. Data Description

We verified the performance of the GRN on ten bench-
mark datasets as follows:

Cora [60]: Cora includes 2708 scientific publications
on machine learning, and nodes are divided into seven
categories according to the topics of the paper. Edges are
the citations between papers.

Citeseer [60]: This dataset includes 3327 scientific pub-
lications, and nodes are divided into six categories.

Pubmed [60]: PubMed includes 19717 scientific publi-
cations on diabetes from the Pubmed database, and nodes
are divided into three categories.

Photo: The Amazon Photo network from [61]. Nodes
represent goods and edges represent that two goods are
frequently bought together.

Physics: The Coauthor Physics network from [61].
Nodes represent authors that are connected by an edge if
they co-authored a paper.

CS: The Coauthor CS network from [61]. Nodes rep-
resent authors that are connected by an edge if they co-
authored a paper.

Terrorist: A public dataset collected from the PIT repos-
itory [62]. This dataset contains information about terrorists
and their relationships. A vector with a value 0/1 describes
each relationship.

Airports [63]: The Airports network, where nodes de-
note airports and labels correspond to activity levels. It
includes three graph datasets Brazil, Europe, and USA.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 7 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

TABLE II
PERFORMANCES (%) ON NODE CLASSIFICATION TASK.

Dataset Cora CiteSeer PubMed Photo CS Physics Terrorist Brazil Europe USA

|𝑉 | 2,708 3,327 19,717 7,650 18,333 34,493 881 131 399 1,190
|𝐸| 5,429 4,732 44,338 238,162 163,788 495,924 8,592 1,038 5,995 13,599
classes 7 6 3 8 15 5 2 4 4 4
Homophily 0.8100 0.7355 0.8023 0.8272 0.8081 0.9314 0.9235 0.4683 0.4048 0.6978

ChebNet 86.83±1.66 72.58±1.44 87.47±0.46 92.24±0.49 90.36±0.56 95.72±0.50 78.47±3.02 42.59±8.32 45.43±4.78 47.18±5.41
GCN 87.25±1.41 72.63±1.68 87.98±0.53 94.18±0.39 93.03±0.22 96.50±0.20 78.14±2.60 40.37±7.49 36.42±4.56 51.36±3.24
GAT 86.81±1.36 73.45±1.32 86.67±0.65 94.57±0.76 92.37±0.30 96.44±0.23 78.24±2.88 38.89±11.02 38.02±6.34 52.18±3.44
GIN 66.19±8.10 58.56±2.29 83.62±1.39 78.51±16.64 73.65±3.97 94.75±0.54 74.24±12.57 31.11±9.69 32.22±6.18 38.57±3.11
LightGCN 86.67±1.60 75.27±1.35 83.92±0.55 92.71±0.57 92.99±0.55 95.91±0.13 77.97±2.91 45.44±7.48 48.15±4.35 53.28±3.48
UniMP 87.16±1.36 75.33±1.34 88.67±0.44 90.56±1.01 93.65±0.34 96.11±0.24 78.53±2.96 45.19±6.79 48.40±4.93 52.82±3.67
GPS 82.14±1.47 71.77±1.16 88.59±0.48 93.66±0.61 91.88±0.71 96.38±0.34 79.10±3.66 42.22±8.31 44.20±5.02 45.71±7.14
ASDGN 83.28±0.82 74.19±1.73 88.83±0.55 91.21±1.32 93.07±0.77 96.76±0.18 78.81±2.95 44.44±11.11 41.73±5.66 46.22±3.63
GRN(GRN-𝐷𝑒𝑔_𝑆𝐶) 89.76±0.45 78.77±0.38 90.42±0.11 95.84±0.26 95.97±0.12 97.06±0.08 82.66±2.10 57.41±5.04 54.20±2.89 56.51±2.15
Std. reduction 0.37 0.78 0.33 0.13 0.10 0.10 0.50 1.75 1.46 0.96
Reduction Ratio 45.12% 67.24% 75.00% 33.33% 45.45% 55.55% 19.23% 25.77% 33.56% 30.87%
Least Imp. 2.51 3.44 1.59 1.27 2.32 0.30 3.56 11.97 5.80 3.23
Average Imp. 6.70 7.34 3.98 5.12 6.21 0.99 4.74 15.62 12.73 8.09

TABLE III
ABLATION STUDIES.

Dataset Cora Citeseer Pubmed Photo CS Physics Terrorist Brazil Europe USA

GRN(GRN-𝐷𝑒𝑔_𝑆𝐶) 89.76±0.45 78.77±0.38 90.42±0.11 95.84±0.26 95.97±0.12 97.06±0.08 82.66±2.10 57.41±5.04 54.20±2.89 56.51±2.15
GRN-𝑅𝑎𝑛𝑑_𝑆𝐶 88.53±0.59 77.42±0.96 89.31±0.22 95.35±0.35 95.42±0.16 96.83±0.09 80.45±2.70 55.93±8.22 52.96±2.02 52.27±3.45
GRN-𝐷𝑒𝑔_𝑅𝑢𝑙𝑒 88.34±0.53 77.78±0.68 89.72±0.45 95.25±0.33 95.51±0.16 96.92±0.05 80.56±1.91 54.07±5.79 52.47±4.21 52.31±5.98
GRN-𝑅𝑎𝑛𝑑_𝑅𝑢𝑙𝑒 88.14±0.49 77.37±0.58 89.52±0.13 94.87±0.23 95.49±0.27 96.94±0.03 80.11±2.47 51.85±6.21 51.23±2.99 50.25±6.26
𝐺𝐷𝐸 87.42±1.29 75.50±1.20 89.60±0.53 95.31±0.61 95.43±0.38 96.95±0.23 80.62±3.71 45.93±8.95 47.19±5.17 51.72±3.00

The statistics of the graphs are summarized at the top of
Table II, including the edge homophily ratio, to reflect the
node homogeneity relations in a graph [64].
5.2. Baselines

We consider the following strong baselines:
ChebNet [45]: ChebNet generalizes convolutional oper-

ation to graph networks and is simplified based on Cheby-
shev polynomials.

GCN [9]: A classic graph convolution network that
updates the nodes’ features by averaging the neighboring
nodes’ features.

GAT [10]: Based on the self-attention mechanism [65],
the model aggregates neighbor features via multi-attention
heads. GAT achieved the SOTA performance on many
datasets in the node classification task.

LightGCN [12]: LightGCN learns user and item embed-
dings by linearly propagating features across the user-item
interaction graph.

UniMP [13]: A unified message passing model that
effectively combines GNNs and label propagation algorithm
(LPA) to incorporate feature and label propagation at both
training and inference time. It is named as Transformer-
Conv in PyG [18].

GPS [49]: A general, powerful, and scalable graph
Transformer with linear complexity that supports multiple
types of encodings. We used GCN as the backbone in the
experiments.

ASDGN [15]: A framework for stable and non-dissipative
DGN design, conceived through the lens of ordinary differ-
ential equations.
5.3. Implementations

Following the previous framework and ensuring fair
comparisons across various graph neural network (GNN)
models, we standardized the experimental setup as follows:

The hidden size 𝑓ℎ𝑖𝑑 was set to 128 for all GNNs. The
Adam optimizer, with a weight decay of 5e-4 was employed
during both training phases. The learning rate was set to
0.003. The datasets were randomly divided into three seg-
ments: 60% for training, 20% for validation, and 20% for
testing. Both 𝐿 and  in GDB (Subsection 4.1) were set
to 2 The sample ratio in Algorithm 1 was set to 0.8. The
initialization of all parameters in the GRN followed that of
Xavier [66]. Since the implementation of models is mostly
based on PyG [18], the results may differ from those in the
original papers. However, the performance was compared
fairly.
5.4. Node Classification

We run each approach on the datasets ten times, report-
ing the Micro-F1 score as prediction accuracy with standard
deviation, the results are shown in Table II. The Airports
(Brazil, Europe, and USA) and TerroristRel do not contain
data of nodes’ features and are replaced by one-hot encoding
and one’s matrix, respectively. The GRN is specifically

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 8 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

TABLE IV
PERFORMANCES (%) OF GRN VARIANTS.

Dataset Cora CiteSeer PubMed Photo CS Physics Terrorist Brazil Europe USA

GCN 87.25±1.41 72.63±1.68 87.98±0.53 94.18±0.39 93.03±0.22 96.50±0.20 78.14±2.60 40.37±7.49 36.42±4.56 51.36±3.24
GRN-𝐺𝐶𝑁 88.54±0.40 76.35±0.09 89.16±0.10 93.28±0.14 93.46±0.22 96.52±0.02 79.27±3.16 48.15±6.63 50.12±7.33 52.94±2.46
Improve(Accuracy/std.) 1.29 / 1.01 3.72 / 1.59 1.18 / 0.43 -0.90 / 0.25 0.43 / 0.00 0.02 / 0.18 1.13 / -0.56 7.78 / 0.86 13.70 / -2.77 1.58 / 0.78
GRN-4𝐿 86.34±1.61 74.62±1.15 89.62±0.56 95.05±0.53 95.14±0.30 96.97±0.24 79.89±1.86 52.59±6.58 46.91±5.41 50.71±3.76
GRN-6𝐿 86.94±0.86 73.57±1.39 89.81±0.25 94.93±0.74 94.93±0.27 96.89±0.20 78.93±2.40 43.70±8.57 47.65±6.35 45.38±2.13
GCN-4𝐿 78.69±7.52 68.71±3.42 85.77±0.40 82.79±8.80 79.61±6.80 92.10±5.19 77.74±2.82 41.48±4.91 30.74±4.53 48.03±3.80
GCN-6𝐿 73.90±7.63 64.40±5.46 80.89±9.87 69.97±23.29 72.29±20.36 86.06±9.34 24.92±18.81 29.26±7.67 27.41±5.79 44.16±7.28

TABLE V
COEFFICIENT OF VARIATION ON DIFFERENT DATASETS.

Dataset ChebNet GCN GAT GIN LightGCN UniMP GPS ASDGN GRN

Cora 0.0191 0.0162 0.0157 0.1224 0.0185 0.0156 0.0179 0.0098 0.0050
CiteSeer 0.0198 0.0231 0.0180 0.0391 0.0179 0.0178 0.0162 0.0233 0.0048
PubMed 0.0053 0.0060 0.0075 0.0166 0.0066 0.0050 0.0054 0.0062 0.0012
Physics 0.0053 0.0041 0.0080 0.2120 0.0061 0.0112 0.0065 0.0145 0.0027
Photo 0.0062 0.0024 0.0032 0.0539 0.0059 0.0036 0.0077 0.0083 0.0012
CS 0.0052 0.0021 0.0024 0.0057 0.0014 0.0025 0.0035 0.0019 0.0008
Terrorist 0.0385 0.0333 0.0368 0.1693 0.0373 0.0377 0.0463 0.0374 0.0254
Brazil 0.1953 0.1856 0.2833 0.3114 0.1646 0.1502 0.1969 0.2500 0.0878
Europe 0.1052 0.1253 0.1668 0.1918 0.0903 0.1019 0.1136 0.1357 0.0533
USA 0.1147 0.0631 0.0659 0.0806 0.0653 0.0695 0.1563 0.0785 0.0380

denoted as GRN-𝐷𝑒𝑔_𝑆𝐶 , which incorporates the degree
probability walk-based sampler and the spectral clustering-
based unstable nodes detector.

The results clearly show that GRN achieves superior pre-
dictive accuracy and the lowest standard deviation compared
to other competitive baseline methods. In well-known cita-
tion datasets such as Cora, Citeseer, and Pubmed, the GRN
has shown performance improvements of at least 1.59%,
with a maximum enhancement of up to 7.34%. Notably,
in smaller graphs with lower homophily, such as Brazil,
Europe, and USA, the GRN exhibited remarkable effective-
ness, consistently reducing the volatility that is often as-
sociated with smaller datasets. However, the enhancements
in accuracy and standard deviation observed with GRN
on large-scale datasets are relatively modest, which can be
attributed to the inherent stability of these larger datasets
against significant fluctuations.
5.5. Ablation Study and Variants Exploration

In addition, we explored GRN variants by using different
strategies for the detector and the sampler. The detector
variants included the 𝑅𝑢𝑙𝑒 and 𝑆𝐶 methods. The 𝑅𝑢𝑙𝑒 is
a rule-based method to identify unstable nodes within 50
epochs. The 𝑆𝐶 method uses spectral clustering for the
detector. The sampler variants include 𝑅𝑎𝑛𝑑 for random
sampling and 𝐷𝑒𝑔 for degree-based sampling.

As shown in TABLE II and TABLE III, the degree-based
sampling variant of the GRN (GRN-𝐷𝑒𝑔_𝑆𝐶) outperforms
other methods, achieving either the highest accuracy or
the lowest standard deviation across multiple datasets. For
instance, on the PubMed dataset, the GRN-𝐷𝑒𝑔_𝑆𝐶 and
GRN-𝐷𝑒𝑔_𝑅𝑢𝑙𝑒 variants exhibited robust performances of
90.42% ± 0.11% and 89.72% ± 0.45%, respectively. This

suggests that leveraging the inherent centrality degree within
graph structures effectively aligns with the model’s ability to
learn and predict neighborhood structures.

In contrast, the rule-based detection approach (𝑅𝑢𝑙𝑒)
yields lower performance metrics than the spectral clustering-
based detector (𝑆𝐶), highlighting the superior ability of
spectral clustering to identify unstable nodes accurately.

The ablation studies underscore the importance of the
relearn phase in the GRN framework. The variant without
this phase, denoted as 𝐺𝐷𝐸, shows a noticeable increase
in standard deviation compared to GRN, indicating reduced
result consistency. For example, on the Brazil dataset, the
standard deviation for 𝐺𝐷𝐸 is 8.95, which is significantly
higher than the 5.04 in the GRN-𝐷𝑒𝑔_𝑆𝐶 variant, indicat-
ing the stabilizing effect of the relearn phase.

The performances of GRN variants are detailed in TA-
BLE IV. When the GRN-𝐺𝐶𝑁 variant shows a significant
performance improvement compared to the original GCN.
The GRN-𝐺𝐶𝑁 variant achieves an impressive accuracy
improvement of approximately 14% on the Europe dataset,
demonstrating the efficacy of our proposed framework in
enhancing the predictive power of GNNs.

To verify the effectiveness of the GRN in addressing the
over-smooth problem, we tested the GRN model with deeper
network architectures, specifically, GRN-4𝐿 and GRN-6𝐿
denoted for four and six layers of depth, respectively. From
TABLE IV, GRN exhibites only minor performance re-
ductions with increased depth. Notably, in the Cora and
PubMed datasets, GRN-6𝐿 surpassed the GRN-4𝐿, achiev-
ing accuracies of 86.94% and 89.81%, respectively. This
indicates that the GRN can effectively utilize deeper network
structures to extract more complex features. In contrast,

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 9 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

TABLE VI
PROPORTION (%) OF STABLE NODES (NODES WITH UNCHANGED PREDICTIONS).

Dataset ChebNet GCN GAT GIN LightGCN UniMP GPS ASDGN GRN

Cora 94.86 95.10 95.53 51.87 94.29 93.35 91.87 76.89 96.89
CiteSeer 91.02 92.42 83.31 56.35 91.40 88.77 92.48 72.78 94.96
PubMed 97.66 98.15 92.97 71.21 97.58 96.44 91.40 87.24 98.50
Physics 98.30 98.47 95.93 71.93 98.36 97.54 99.02 98.89 99.27
Photo 96.01 94.70 94.62 38.27 95.78 90.50 86.21 82.48 98.50
CS 97.20 97.03 91.84 59.00 96.81 92.72 82.00 77.00 98.42
Terrorist 82.95 97.73 92.61 68.18 97.16 97.73 96.59 92.05 98.30
Brazil 92.31 82.69 76.15 76.15 83.46 81.92 92.31 88.46 96.15
Europe 96.84 91.52 72.15 74.68 95.44 83.16 93.67 77.22 98.86
USA 92.52 90.80 67.56 57.61 93.61 84.24 88.36 77.31 97.35

increasing the number of layers in traditional GCNs often
leads to diminished performance or even a significant de-
cline. This is typically owing to issues such as overfitting
or vanishing gradients, which hinder the model’s ability to
generalize effectively. The ability of GRN to either maintain
or enhance performance with additional layers highlights its
robustness and stability, making it well-suited for managing
the complexities associated with deeper GNN architectures.
5.6. Quantification

To assess the performance of the GRN model in terms of
representation stability compared to other strong baselines,
we employ the Coefficient of Variation (CV) as the metric
for stability assessment. This metric, defined by the equation
(𝐶𝑉 = 𝜎

𝜇), where 𝜎 is the standard deviation and 𝜇 is the
mean, effectively neutralizes the impact of scale in accuracy
measurements (with a lower CV value indicating enhanced
model stability). The CV values for all models across various
datasets are presented in Table V, where GRN achieves the
best performance.

To assess the effectiveness of the Graph Relearn Net-
work (GRN) in addressing the phenomenon of node predic-
tion class oscillations, we also quantify the instances of node
skipping. Table VI presents the average proportions of stable
nodes over the last 50 epochs under identical experimental
conditions. Stable nodes are defined as those with unchanged
predictions across epochs. The GRN consistently yields
more consistent and stable predictions across all datasets
than the baseline models.

We conducted experiments with the GRN on the Cite-
Seer and USA datasets, alternating between the pre-predict
phase (15 epochs per iteration) and the relearn phase (15
epochs per iteration) for seven cycles, totaling 210 epochs.
We also trained all baseline models and monitored the counts
of stable nodes throughout the process. As illustrated in
Fig. 5, during the initial epochs, the GRN, along with GDE
and UniMP, exhibited significantly fewer unstable nodes
compared to the other models. A consistent decrease in the
number of unstable nodes was observed, which eventually
stabilized as the training progressed. The GPS model ex-
hibited notable oscillations in node stability, particularly
in the Citeseer dataset. Although UniMP and GDE also
performed well, maintaining a low proportion of unstable

(a) Citeseer

(b) USA

Fig. 5: Number of unstable nodes of GRN and other baselines
during training.

nodes, the GRN consistently exhibited the lowest proportion
of unstable nodes and achieved the smallest variance in
prediction accuracy among the evaluated models.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 10 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

Fig. 6: Comparison of different unstable node detectors. SC and Rule indicate the unstable node detectors based on the spectral
clustering and rule methods, respectively (Section 5.5). Nodes with the same color are in the same class.

In Appendix A, we delve into the characteristics of
unstable nodes and demonstrate that the majority are either
peripheral nodes or those overlapping between communities,
which provides further insight into the structural challenges
addressed by the GRN in enhancing prediction stability.
5.7. Cases by Different Detectors

In this section, we investigate different methods for de-
tecting unstable nodes within the GRN, specifically focusing
on rule-based and spectral clustering approaches as detailed
in Section 5.5. Figure 6 presents a visual representation
of the predictions made by both detectors. Node 8253,
which was characterized by its continuous fluctuations in
the predicted category, is deemed unstable by both the rule-
based and spectral clustering methods. In contrast, node
133, which exhibited a category change only in the early
training phase (epoch 396) before stabilization, is flagged
as unstable by the rule-based method but not by the spectral
clustering detector. This indicates that the spectral clustering
approach is more attuned to the prediction stability, making
it a preferable option for identifying truly unstable nodes in
the GRN.
5.8. Visualization

We draw unstable nodes on the Cora dataset to visualize
the effects of the GRN on the node-skipping phenomenon.
As shown in Fig. 7, node 2186 is situated at the intersection
of two major clusters or communities. GRN focuses more
on the distribution of neighboring nodes and consistently
predicts the correct blue class in subsequent epochs. The
neighbors of node 2276 have a relatively balanced distri-
bution of categories and are located at a junction between
clusters or communities. In addition, the neighbors of nodes
285 and 2274 are illustrated; both are located at the pivotal
connecting points among node clusters. During the relearn
phase, the GRN effectively corrects the predicted category
of this node.

Additionally, we assessed the representational capabil-
ities of various methods by visualizing the node represen-
tations from GRN, GCN, GAT, and LightGCN, all trained
on the Cora dataset. We employed T-SNE [67] to reduce
the dimensions of the node representations from the final
layer to two dimensions. The visualization results, presented
in Fig. 8, show that node representations learned by the
GRN are clearly distributed around the center, with seven
well-delineated, color-coded categories indicating distinct
inter-cluster separations. Although GCN and LightGCN also
perform well, their intra-cluster node aggregation appears
comparatively less defined than that of GRN. The perfor-
mance of GAT is moderately satisfactory, with some classes
of nodes appearing more dispersed. Overall, these results
highlight GRN’s superior ability to capture and learn distinct
node characteristics fundamentally.
5.9. Model Convergence

We evaluate the convergence characteristics of the GRN
on CiteSeer and USA datasets. The procedure of the GRN in-
cludes phases: the pre-prediction phase (20 epochs), and the
subsequent relearn phase (10 epochs), which repeats seven
times (for a total of 210 epochs). The training processes for
GDE and GCN are also recorded. The curves depicting the
test accuracy, training, validation, and test loss are shown in
Fig. 9.

The experimental results reveal that both GRN and GDE
initially exhibit a slight increase in validation and test loss
curves during the early stages of training, which then gradu-
ally decline as they approach convergence. Correspondingly,
the accuracy curves exhibit a steady increase before stabiliz-
ing at a plateau. Notably, the absence of the relearn phase
in the GDE framework leads to poorer accuracy compared
to GRN. In contrast, GCN shows signs of overfitting on
both datasets, particularly on the CiteSeer dataset. This

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 11 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

(a) Central Node 285, Epoch 236, 238, 240

(b) Central Node 2274, Epoch 295, 297, 300

(c) Central Node 2186, Epoch 202, 205, 208

(d) Central Node 2276, Epoch 167, 172, 223

Fig. 7: Cases of GRN training on the Cora dataset. Nodes with
the same color indicate the same class.

suggests that the GDE architecture offers certain benefits in
mitigating overfitting.

Further details on quantifying the over-smoothing effect
of the different methods using the Dirichlet energy are
provided in Appendix B [68].

6. Conclusion
GNNs based on message passing often exhibit insta-

bility because the predicted node classes oscillate between
categories. This issue, which is the focus of this study,
contributes significantly to the performance instability in

(a) GRN (b) GCN

(c) GAT (d) LightGCN

Fig. 8: Visualization of GRN and baselines on the Cora dataset
by TSNE[67].

(a) CiteSeer-GRN (b) USA-GRN

(c) CiteSeer-GDE (d) USA-GDE

(e) CiteSeer-GCN (f) USA-GCN

Fig. 9: Loss and accuracy curves of GRN, GDE, and GCN on
the CiteSeer and USA.

terms of prediction accuracy. To address this issue, we
introduce the Graph Relearn Network (GRN), which is a
novel framework designed to correct and stabilize predic-
tions by relearning unstable nodes during training. The GRN

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 12 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

achieves the lowest standard deviation and highest prediction
accuracy on ten benchmark graph datasets.

However, the GRN framework exhibits certain limita-
tions, notably that the enhancement in representational per-
formance for the underlying GNN backbone is not markedly
pronounced, and there is an increase in computational over-
head by approximately 2 to 4 times compared to tradi-
tional GNNs. Despite these drawbacks, the framework re-
mains highly versatile and can be adapted to any graph neu-
ral network model that addresses node classification tasks,
thereby ensuring the representational stability of GNNs.
This adaptability extends to a variety of applications, in-
cluding graph structure anomaly detection, rumor detection,
molecular classification, and drug generation, among oth-
ers. Our experiments demonstrate that the GRN framework
significantly mitigates instability and thereby affects the
prediction accuracy of GNNs.

CRediT authorship contribution statement
Zhenhua Huang: Conceptualization, Methodology, Soft-

ware. Kunhao Li: Data, Writing, Implementation. Yihang
Jiang: Implementation, Revising. Zhaohong Jia: Advising,
Conceptualization. Linyuan Lv: Revising, Supervision.
Yunjie Ma: Advising, Revising.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that may influ-
ence the work.

Data availability
Data will be made available on request.

Acknowledgement
This work was supported by the National Natural Sci-

ence Foundation of China (Number 71971002). We also
thank the support of PyG [18] for our experiments.

Appendix
A. Statistics of Unstable Nodes

We selected a subset of representative unstable nodes
generated by GCN on the Airports (USA) dataset and vi-
sualized their two-hop neighborhoods in Fig. 10. Due to
their fluctuating predicted categories, these unstable nodes
are colored white, while other nodes are colored consistently
to denote category membership. These unstable nodes fre-
quently occur at the peripheries of clusters, and at the junc-
tions between different clusters or communities, indicating
that their categorization is highly susceptible to the influence
of neighboring nodes from various categories.

To further understand the distribution of unstable nodes
in traditional graph neural networks, we conducted a statis-
tical analysis of their locations. We utilized a dataset pro-
cessed by GCN (noting that GRN has effectively eliminated

many unstable nodes, making it unsuitable for this analysis)
and employed a spectral clustering (SC) detector to identify
the unstable nodes. We used KM_config [69] to determine
the proportion of nodes at the peripheries of clusters, and
Demon [70] to identify nodes at the junctures between com-
munities. As shown in TABLE VII, the statistical results in-
dicate that the unstable nodes generated by traditional graph
neural networks predominantly occur at the periphery of
communities and the junctions between communities. This
positioning exposes periphery nodes to frequent updates
during neighbor aggregations within the graph convolutional
layers, making them particularly vulnerable to influences
from connected nodes, as illustrated in Fig. 10 (a)(b)(c)(d).
The merging of information from different communities in
the representations of nodes situated between communities
leads to oscillations in predicted classes, as seen in Fig.
10 (i). Unstable nodes can also be found in more complex
positions, such as those shown in Fig. 10 (g)(f)(h). This
detailed analysis underscores the challenges in managing
node stability in graph neural networks and highlights the
areas where improvements are necessary.
B. Over Smoothing Relief

The over-smoothing is a prevalent issue in graph neural
networks, where node features become increasingly indistin-
guishable after several layers of convolution. Dense connec-
tions in GRN are applied to alleviate it. We apply Dirichlet
Energy [68] on graph data to evaluate the advantage of the
GRN on the over-smoothing relief. Higher Dirichlet Energy
indicates better performance in the perspective of the over-
smoothing problem. The Dirichlet Energy normalized by the
node degrees is:

𝜀(𝑋𝑛) = 1
𝑁

∑

𝑖∈𝑉

∑

𝑗∈𝑁𝑖

‖

‖

‖

‖

‖

‖

𝑋𝑛
𝑖

√

1 + 𝑑𝑖
−

𝑋𝑛
𝑗

√

1 + 𝑑𝑗

‖

‖

‖

‖

‖

‖

2

2

(12)

where 𝑋𝑛 is the feature of the 𝑛𝑡ℎ layer, 𝑖 is the neighbors
set of node 𝑖, 𝑑𝑖 and 𝑑𝑗 are the degree of node 𝑖 and node 𝑗.
We set 𝑖 as a two-hop subgraph. The Dirichlet Energy of
baselines and GRN is reported in Table VIII, and the best and
second-best performances are highlighted by the underline.

After undergoing two-layer convolutions, GRN outper-
forms all baseline models on most datasets, particularly
in the Cora, Citeseer, and USA with the highest Dirichlet
Energies. This performance suggests that GRN is capable
of producing a greater degree of feature distinction after
convolution, effectively mitigating the over-smoothing issue.

Although GRN does not always secure the absolute
highest scores on datasets like Pubmed and Europe, it con-
sistently ranks among the top performers, underscoring its
robustness across various types of graph data. While models
such as GPS and ASDGN occasionally match or exceed
GRN’s performance on specific datasets, they lack the over-
all consistent efficacy demonstrated by GRN.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 13 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

TABLE VII
DISTRIBUTION PROPORTION (%) OF UNSTABLE NODES IN GRAPHS BASED ON GCN.

Dataset Cora Citeseer Pubmed Photo CS Physics Terrorist Brazil Europe USA

Edge nodes 51.05 49.40 69.71 30.83 38.15 28.12 9.67 28.98 24.55 47.44
Overlapping nodes 18.12 6.42 11.46 65.14 54.62 68.81 54.83 55.07 72.45 48.57

(a) Node 18 (b) Node 278 (c) Node 461

(d) Node 369 (e) Node 954 (f) Node 220

(g) Node 138 (h) Node 269 (i) Node 329

Fig. 10: Cases of the detected unstable nodes on the USA dataset based on GCN. Nodes with the same color indicate the same
class. White nodes indicate the unstable nodes.

TABLE VIII
DIRICHLET ENERGY OF DIFFERENT METHODS.

Dataset Cora Citeseer Pubmed Physics Photo CS Terrorist Brazil Europe USA

Chebnet 18.84 15.37 3.14 21.25 36.31 46.70 7.43 37.70 213.79 113.69
GCN 8.48 4.50 0.97 5.37 12.76 17.66 2.81 9.50 44.44 19.19
GAT 14.69 5.45 2.48 22.60 43.76 53.45 0.46 9.56 7.60 5.57
GIN 4.99 3.68 3.56 2.27 4.91 9.32 8.13 12.09 4.58 10.06
LightGCN 10.56 9.79 1.33 6.07 13.94 18.70 0.42 3.49 25.19 9.32
UniMP 30.03 23.18 8.09 28.21 73.14 59.73 0.38 34.81 45.48 31.23
GPS 21.00 20.22 18.15 12.38 36.18 50.94 0.07 47.05 79.89 56.98
ASDGN 15.92 13.44 3.86 22.83 88.25 62.21 0.22 21.15 34.28 21.59
GRN 41.33 35.45 13.76 28.59 49.90 71.34 18.31 53.80 134.68 137.21

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 14 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

References
[1] Y. Zhou, H. Zheng, X. Huang, S. Hao, D. Li, J. Zhao, Graph neural

networks: Taxonomy, advances, and trends, ACM Transactions on
Intelligent Systems and Technology (TIST) 13 (2022) 1–54.

[2] Y. Zhao, H. Zhou, R. Xie, F. Zhuang, Q. Li, J. Liu, Incorporating
global information in local attention for knowledge representation
learning, in: Findings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, 2021, pp. 1341–1351.

[3] L. Yao, C. Mao, Y. Luo, Graph convolutional networks for text
classification, in: Proceedings of the AAAI conference on artificial
intelligence, volume 33, 2019, pp. 7370–7377.

[4] D. Wang, P. Liu, Y. Zheng, X. Qiu, X.-J. Huang, Heterogeneous
graph neural networks for extractive document summarization, in:
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, 2020, pp. 6209–6219.

[5] M. Li, Z. Zhu, Spatial-temporal fusion graph neural networks for
traffic flow forecasting, in: Proceedings of the AAAI conference on
artificial intelligence, volume 35, 2021, pp. 4189–4196.

[6] C. Xu, Y. Zhang, H. Chen, L. Dong, W. Wang, A fairness-aware
graph contrastive learning recommender framework for social tagging
systems, Information Sciences (2023) 119064.

[7] J. Huang, R. Xie, Q. Cao, H. Shen, S. Zhang, F. Xia, X. Cheng,
Negative can be positive: Signed graph neural networks for rec-
ommendation, Information Processing & Management 60 (2023)
103403.

[8] X. Li, C. Xiao, Z. Feng, S. Pang, W. Tai, F. Zhou, Controlled
graph neural networks with denoising diffusion for anomaly detection,
Expert Systems with Applications 237 (2024) 121533.

[9] T. N. Kipf, M. Welling, Semi-supervised classification with graph
convolutional networks (2017).

[10] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Ben-
gio, Graph attention networks (2018).

[11] K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural
networks?, in: Proceedings of International Conference on Learning
Represent, 2018.

[12] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn:
Simplifying and powering graph convolution network for recom-
mendation, in: Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval,
2020, pp. 639–648.

[13] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, Y. Sun, Masked
label prediction: Unified message passing model for semi-supervised
classification, Proceedings of International Joint Conference on
Artificial Intelligence (2021).

[14] H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie, Y. Wang,
Understanding gnn computational graph: A coordinated computation,
io, and memory perspective, in: Proceedings of Machine Learning and
Systems, volume 4, 2022, pp. 467–484.

[15] A. Gravina, D. Bacciu, C. Gallicchio, Anti-symmetric DGN: a stable
architecture for deep graph networks, in: The Eleventh International
Conference on Learning Representations, 2023.

[16] K. Li, Z. Huang, Z. Jia, Rahg: A role-aware hypergraph neural
network for node classification in graphs, IEEE Transactions on
Network Science and Engineering (2023).

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural
message passing for quantum chemistry, in: International conference
on machine learning, PMLR, 2017, pp. 1263–1272.

[18] M. Fey, J. E. Lenssen, Fast graph representation learning with
PyTorch Geometric, in: Proceedings of ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

[19] W. Zhang, Y. Shen, Z. Lin, Y. Li, X. Li, W. Ouyang, Y. Tao, Z. Yang,
B. Cui, Pasca: A graph neural architecture search system under the
scalable paradigm, in: Proceedings of the ACM Web Conference
2022, 2022, pp. 1817–1828.

[20] R. Ying, D. Bourgeois, J. You, M. Zitnik, J. Leskovec, Gnn explainer:
A tool for post-hoc explanation of graph neural networks (2019).

[21] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, X. Zhang,
Parameterized explainer for graph neural network, Advances in neural

information processing systems 33 (2020) 19620–19631.
[22] X. Wang, Y. Wu, A. Zhang, F. Feng, X. He, T.-S. Chua, Reinforced

causal explainer for graph neural networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence (2022).

[23] Z. Zhang, Q. Liu, H. Wang, C. Lu, C. Lee, Protgnn: Towards self-
explaining graph neural networks, in: Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, 2022, pp. 9127–
9135.

[24] H. Zhenhua, L. Kunhao, W. Shaojie, J. Zhaohong, Z. Wentao,
M. Sharad, Ses: Bridging the gap between explainability and pre-
diction of graph neural networks, in: 40th International Conference
on Data Engineering, 2024.

[25] K. Li, Y. Liu, X. Ao, J. Chi, J. Feng, H. Yang, Q. He, Reliable
representations make a stronger defender: Unsupervised structure
refinement for robust gnn, in: Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2022, pp.
925–935.

[26] R. Arghal, E. Lei, S. S. Bidokhti, Robust graph neural networks via
probabilistic lipschitz constraints, in: Learning for Dynamics and
Control Conference, PMLR, 2022, pp. 1073–1085.

[27] Y. Song, Q. Kang, S. Wang, K. Zhao, W. P. Tay, On the robustness of
graph neural diffusion to topology perturbations, Advances in Neural
Information Processing Systems 35 (2022) 6384–6396.

[28] L. Ruiz, Z. Wang, A. Ribeiro, Graphon and graph neural network
stability, in: ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp. 5255–
5259.

[29] F. Gama, J. Bruna, A. Ribeiro, Stability properties of graph neural
networks, IEEE Transactions on Signal Processing 68 (2020) 5680–
5695.

[30] H. Kenlay, D. Thano, X. Dong, On the stability of graph convolutional
neural networks under edge rewiring, in: ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2021, pp. 8513–8517.

[31] J. Qiu, Q. Chen, Y. Dong, J. Zhang, H. Yang, M. Ding, K. Wang,
J. Tang, Gcc: Graph contrastive coding for graph neural network pre-
training, in: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp.
1150–1160.

[32] M. I. Jordan, T. M. Mitchell, Machine learning: Trends, perspectives,
and prospects, Science 349 (2015) 255–260.

[33] O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, A review of machine
learning approaches to power system security and stability, IEEE
Access 8 (2020) 113512–113531.

[34] L. Ruiz, F. Gama, A. Ribeiro, Graph neural networks: architectures,
stability, and transferability, Proceedings of the IEEE 109 (2021) 660–
682.

[35] H. Song, Y. Wang, W. Zhang, X. Liu, T. Liu, Generate, delete and
rewrite: A three-stage framework for improving persona consistency
of dialogue generation, in: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2020, pp. 5821–5831.

[36] M. Ren, W. Zeng, B. Yang, R. Urtasun, Learning to reweight
examples for robust deep learning, in: International conference on
machine learning, PMLR, 2018, pp. 4334–4343.

[37] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, Densely
connected convolutional networks, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp.
4700–4708.

[38] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini,
The graph neural network model, IEEE transactions on neural
networks 20 (2008) 61–80.

[39] S. Abadal, A. Jain, R. Guirado, J. López-Alonso, E. Alarcón, Comput-
ing graph neural networks: A survey from algorithms to accelerators,
ACM Computing Surveys (CSUR) 54 (2021) 1–38.

[40] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A
comprehensive survey on graph neural networks, IEEE transactions
on neural networks and learning systems 32 (2020) 4–24.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 15 of 16

GRN: Reducing Performance Variance and Improving Prediction Accuracy of Graph Neural Networks

[41] J. You, B. Liu, Z. Ying, V. Pande, J. Leskovec, Graph convolutional
policy network for goal-directed molecular graph generation, in:
Proceedings of Advances in neural information processing systems,
volume 31, 2018.

[42] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton,
J. Leskovec, Graph convolutional neural networks for web-scale
recommender systems, in: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining,
2018, pp. 974–983.

[43] X. Chen, F. Zhou, K. Zhang, G. Trajcevski, T. Zhong, F. Zhang,
Information diffusion prediction via recurrent cascades convolution,
in: Proceedings of the IEEE 35th international conference on data
engineering (ICDE), IEEE, 2019, pp. 770–781.

[44] Z. Chen, S. Li, B. Yang, Q. Li, H. Liu, Multi-scale spatial temporal
graph convolutional network for skeleton-based action recognition,
in: Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 2021, pp. 1113–1122.

[45] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural
networks on graphs with fast localized spectral filtering, in: Pro-
ceedings of the Advances in Neural Information Processing Systems,
2016, pp. 3844–3852.

[46] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning
on large graphs, Proceedings of Advances in neural information
processing systems 30 (2017).

[47] F. M. Bianchi, D. Grattarola, L. Livi, C. Alippi, Graph neural
networks with convolutional arma filters, IEEE Transactions on
Pattern Analysis and Machine Intelligence (2021).

[48] W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning
on large graphs, Advances in neural information processing systems
30 (2017).

[49] L. Rampášek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf,
D. Beaini, Recipe for a general, powerful, scalable graph trans-
former, Advances in Neural Information Processing Systems 35
(2022) 14501–14515.

[50] S. Zheng, Y. Song, T. Leung, I. Goodfellow, Improving the robustness
of deep neural networks via stability training, in: Proceedings of the
ieee conference on computer vision and pattern recognition, 2016, pp.
4480–4488.

[51] Z. Wang, L. Ruiz, A. Ribeiro, Stability of neural networks on
manifolds to relative perturbations, in: ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2022, pp. 5473–5477.

[52] K. Zhao, Q. Kang, Y. Song, R. She, S. Wang, W. P. Tay, Adversarial
robustness in graph neural networks: A hamiltonian approach, in:
A. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
(Eds.), Advances in Neural Information Processing Systems, vol-
ume 36, Curran Associates, Inc., 2023, pp. 3338–3361.

[53] Z. Dong, M. Zhang, P. Payne, M. A. Province, C. Cruchaga, T. Zhao,
F. Li, Y. Chen, Rethinking the power of graph canonization in graph
representation learning with stability, in: The Twelfth International
Conference on Learning Representations, 2024.

[54] A. Elgohary, D. Peskov, J. Boyd-Graber, Can you unpack that?
learning to rewrite questions-in-context (2019) 5918–5924.

[55] P. Ponnusamy, A. Ghias, Y. Yi, B. Yao, C. Guo, R. Sarikaya,
Feedback-based self-learning in large-scale conversational ai agents,
AI magazine 42 (2022) 43–56.

[56] S. Qiu, A. Potapczynski, P. Izmailov, A. G. Wilson, Simple and fast
group robustness by automatic feature reweighting, in: A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, J. Scarlett (Eds.), Pro-
ceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, PMLR,
2023, pp. 28448–28467.

[57] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[58] M. Ahmed, R. Seraj, S. M. S. Islam, The k-means algorithm: A
comprehensive survey and performance evaluation, Electronics 9
(2020) 1295.

[59] R. Mondragón, Estimating degree–degree correlation and network
cores from the connectivity of high–degree nodes in complex net-
works, Scientific reports 10 (2020) 5668.

[60] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad,
Collective classification in network data, AI magazine 29 (2008) 93–
93.

[61] O. Shchur, M. Mumme, A. Bojchevski, S. Günnemann, Pitfalls
of graph neural network evaluation, in: Relational Representation
Learning Workshop, NeurIPS 2018, 2018.

[62] B. Zhao, P. Sen, L. Getoor, Event classification and relationship
labeling in affiliation networks, in: Proceedings of the workshop on
statistical network analysis (SNA) at the 23rd international conference
on machine learning (ICML), 2006, pp. 271–280.

[63] L. F. Ribeiro, P. H. Saverese, D. R. Figueiredo, struc2vec: Learning
node representations from structural identity, in: Proceedings of the
23rd ACM SIGKDD international conference on knowledge discov-
ery and data mining, 2017, pp. 385–394.

[64] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, D. Koutra, Beyond
homophily in graph neural networks: Current limitations and effective
designs, Advances in neural information processing systems 33
(2020) 7793–7804.

[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, I. Polosukhin, Attention is all you need, in:
Proceedings of the 31st Advances in Neural Information Processing
Systems, 2017, pp. 5998–6008.

[66] X. Glorot, Y. Bengio, Understanding the difficulty of training deep
feedforward neural networks, in: AISTATS, JMLR Workshop and
Conference Proceedings, 2010, pp. 249–256.

[67] L. Van der Maaten, G. Hinton, Visualizing data using t-sne., Journal
of machine learning research 9 (2008).

[68] T. K. Rusch, M. Bronstein, S. Mishra, A survey on oversmoothing in
graph neural networks, SAM Research Report 2023 (2023).

[69] S. Kojaku, N. Masuda, Core-periphery structure requires something
else in the network, New Journal of physics 20 (2018) 043012.

[70] M. Coscia, G. Rossetti, F. Giannotti, D. Pedreschi, Demon: a local-
first discovery method for overlapping communities, in: Proceedings
of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2012, pp. 615–623.

Zhenhua Huang et al.: Preprint submitted to Elsevier Page 16 of 16

