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Abstract. Bundle recommendation aims to provide personalized product
bundles, yet existing methods suffer from redundant learning (overlapping
user-item and user-bundle interactions) and undifferentiated interaction
modeling (uniform aggregation of nodes). To address these challenges,
we propose a novel method named Multi-interaction Graph attention
network for Bundle Recommendation (MGBR), which integrates multi-
interaction separation, topology-aware structural learning, and cross-task
preference transfer. Specifically, MGBR constructs three homogeneous
graphs (user-bundle, user-item, bundle-item) to isolate interaction re-
dundancy and employs a hierarchical graph attention mechanism to
dynamically assign weights to interactions (e.g., distinguishing core vs.
peripheral items in bundles). To enhance structural discriminability, we
propose a structural hint learning module with dual objectives: (1) node
degree prediction to preserve user activity and bundle popularity patterns;
(2) neighbor degree sum prediction to capture local topological depen-
dencies. Additionally, multi-task learning transfers knowledge between
item-level and bundle-level preferences through shared user embeddings.
Extensive experiments on two real public datasets demonstrate that
MGBR outperforms previous bundle recommendation methods by 1.30%
- 4.65% on NetEase and Youshu.

Keywords: Bundle recommendation · Graph attention network · Struc-
tural hint learning · Multi-task learning.

1 Introduction

The recommendation system provides personalized preferences for users and
has become the most widely applied information system [1]. In recent years,
graph neural networks (GNNs)[3] have emerged as a cutting-edge technology for
making personalized and context-aware recommendations. GNNs can effectively
model complex relationships and dependencies among items or users in a graph
structure. They open up possibilities for designing recommendation systems that
leverage rich interactions and connections among items or users, which leads to
improved recommendation accuracy and diversity[2].

Bundle recommendation [5, 6] is a specific topic in recommendation systems.
It provides customers with tailored product recommendations while increasing



revenue for businesses. Early works addressed the bundle recommendation prob-
lem using parameter sharing or joint loss functions to learn user-item interactions
and user-bundle interactions [4, 7]. A GNN-based model was first proposed by
Chang et al. [8], which unifies the two interactions and bundle-item affiliation
into a heterogeneous graph and employs a sampling method for training. Tan
et al. [9] considered the co-purchase and co-occurrence information of the items
to model intention-oriented hierarchical representations based on graph con-
volutional propagation. CrossCBR [24] further adopts contrastive learning to
model the cooperative association between user-level and bundle-level graph
views to achieve mutual enhancement. Zhu et al.[25] proposed a novel graph
learning paradigm called counterfactual learning for bundle recommendation
to mitigate the impact of data sparsity problems and improve bundle recom-
mendation. Ma et al.[15] proposed an ”early fusion and late contrast” strategy,
which effectively captures user preferences and mitigates the sparse bundle-item
association problem, ultimately enhancing recommendation performance. Despite
the effectiveness of the existing bundle recommendation methods, they still have
the following limitations:

Redundancy in learning hinders preference modeling. Previous studies
have addressed the interplay between user-bundle interaction information and
user-item interaction information in an integrated fashion, which presents a
challenge. Specifically, as the user-item interaction information is being learned,
the implicit item details are once again included in the learning of the user-bundle
interaction information, given that the bundle is influenced by its constituent
items. This phenomenon significantly shapes the modeling of the user’s bundle
preference.

Inability to distinguish the different interactions. Not all items in the
bundle are necessarily influential in characterizing the bundle. As shown in Figure
1(a), most of the existing works [8–10] aggregated the information of neighboring
nodes based on the graph topology, treated all nodes equally, and did not consider
the different importance of nodes in multiple interactions. In our works, as shown
in Figure 1(b), where the Solid lines represent existing interactions, the lighter
the color, the lower the impact. The dashed lines represent possible interactions.
We can visualize that user u is more likely to interact with bundle b1 rather than
b2.

To address these shortcomings, we propose a model MGBR for bundle rec-
ommendation. Specifically, we first construct three bipartite graphs based on
interaction and dependency relationships, such as the user-bundle interaction
graph and bundle-item affiliation graph. Since not all items in a bundle necessarily
contribute to its characteristic features, we incorporate a set of structural hint
features (e.g., node degree distribution and neighborhood degree distribution)
into the interaction graph construction, which are designed to capture inherent
topological properties. This structural learning mechanism enables the model to
generate more discriminative node embeddings and graph representations through
systematic acquisition of these structural patterns. The enhanced discriminative
power ultimately leads to improved accuracy in downstream prediction tasks.
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Fig. 1: Illustration of the different influences among users, bundles, and items.

Then we utilize a graph attention mechanism to consider the relationships between
different entities from the constructed graphs and obtain the representations of
various entities. Finally, to enhance bundle preference prediction, we leverage
multi-task learning by sharing user representations and transferring knowledge of
user preferences at the item level. This approach allows us to improve the accu-
racy of bundle preference prediction by incorporating relevant user information
into the model’s training process. Comprehensive experiments on two real public
datasets show that our proposed approach outperforms various representative
bundle recommendation methods. In general, the main contributions of this paper
are summarized as follows:

Contributions: (i) We propose a multi-interaction graph attention network to
solve the problem of bundle recommendation by incorporating different influences
of multi-interactions among users, items, and bundles. (ii) We propose integrating
structural hint learning into bundle recommendation through a graph structural
loss function that incorporates node and neighborhood degree distributions. This
formulation enables dynamic adaptation to heterogeneous bundle structures.
(Iii) Extensive experiments on two real-world datasets have demonstrated the
effectiveness of the proposed methods. Our proposed method outperforms existing
baselines by 4.84% - 11.24%.



Fig. 2: Schematic illustration of the model MGBR. Yellow nodes are users, blue
nodes are bundles, and green nodes are items.

2 Problem Definitions

Suppose we have a set U of N users, a set I of M items, and a set B of K bundles.
We define the three matrices, user-bundle interaction matrix, user-item interaction
matrix, and bundle-item affiliation matrix as XN×K = {xub | u ∈ U, b ∈ B},
Y N×M = {yui | u ∈ U, i ∈ I}, ZK×M = {zbi | b ∈ B, i ∈ I}, respectively. Where
xub ∈ {0, 1} denotes that user u has interacted with bundle b or not. Similarly,
yui = 1 denotes that user u has interacted with item i, and zbi = 1 means
bundle b contains item i. Based on the above definitions, the problem of bundled
recommendation is as follows:

Input: Users U, Bundles B, Items I, user-item interaction matrix X, user-
bundle interaction matrix Y, and bundle-item affiliation matrix Z.

Output: The probability that a user u will interact with a bundle b.

3 Methodology

The overall architecture of our proposed MGBR is illustrated in Figure 2. The
model contains the following three components:

3.1 Homogeneous Graph Construction

Three homogeneous graphs are constructed to capture the interactions among
different entities (i.e., users, items, and bundles) in a bundle recommendation
scenario. The three graphs are used to model user-item interactions, user-bundle



interactions, and bundle-item affiliations, respectively. The three homogeneous
graphs represent the relationships and dependencies between these entities in
a unified and structured manner. By leveraging graph-based representations,
MGBR captures the complex interactions and dependencies among users, items,
and bundles, which are crucial for understanding user preferences.

We construct the graphs G1, G2, and G3 based on the existing user-item
interaction information, user-bundle interaction information, and bundle-item
affiliation information with their corresponding adjacency matrices X, Y, and Z,
respectively.

The adjacency matrix of the three homogeneous graphs is defined as:

Ao =

 Iu Y

Y T Ib

 (1)

Ap =

 Iu X

XT Ii

 (2)

Aq =

 Ib Z

ZT Ii

 (3)

where Iu, Ib, and Ii are identity matrices for users, items, and bundles. It is
assumed that every node is self-connected.

3.2 Embedding Learning

Eu ∈ RN×d, Eb ∈ RK×d, Ei ∈ RM×d denote the initialized user embedding, bun-
dle embedding, and item embedding, respectively. d is the embedding dimension.

To distinguish the different influences of nodes in multiple interactions, we
utilize a graph attention mechanism to learn representations of different nodes in
the constructed graphs. The learned embedding capture the complex interactions
and dependencies among users, items, and bundles, and serve as compact and
informative representations of the entities in the recommendation process. As
shown in Figure 2, MGBR calculates the attention value between different nodes
and focuses on those interactions with high weights to accurately grasp user
preferences. Formally, the model is formulated as:

X(l+1) = f(X(l), Ai), (4)

where f(·) means the graph attention mechanism. X(l) are the feature of different
nodes at the l -th layer and Ai denotes the adjacent matrix of the homogeneous
graphs.



User-Bundle Interaction Graph Learning. By employing the graph at-
tention layer to process the user-bundle interaction matrix, MGBR is able to
calculate attention values that capture the relevance between users and bundles.
These attention values are then used to update the representations of users and
bundles, enabling the model to capture the important interactions between them.
Accordingly, we reformulate Eq.4 as:

E(l+1)
u,o , E

(l+1)
b,o = f(E(l)

u , E
(l)
b , Ao) (5)

where E
(0)
u , E

(0)
b is set as Eu, Eb at initial iteration. The specifically embedding

updating rules for user u and bundle b are formulated as follows:

el+1
u,o = σ(W1(αuue

l
u,o +

∑
b∈Nu

αube
l
b,o)),

el+1
b,o = σ(W1(αbbe

l
b,o +

∑
u∈Nb

αbue
l
u,o)).

(6)

User-Item Interaction Graph Learning. The users’ preference for an indi-
vidual item in a bundle can significantly influence their overall interest in that
bundle. For instance, a user may reject a bundle due to the presence of a disliked
item.

We leverage the attention factor to capture not only the user preferences
for items but also the characteristics of the items themselves. By incorporating
the attention factor, MGBR can effectively capture the nuanced preferences of
users towards individual items within bundles, which allows for more accurate
modeling of user preferences. Similar to Eq. 6, the embedding updating rules in
the user-item interaction graph are defined as follows:

el+1
u,p = σ(W2(αuue

l
u,p +

∑
i∈Nu

αuie
l
i,p)),

el+1
i,p = σ(W2(αiie

l
i,p +

∑
u∈Ni

αiue
l
u,p)).

(7)

Bundle-Item affiliation Graph Learning. The items included in a bundle
can have varying degrees of importance in determining the quality of the bundle.
To capture these dependencies between items and learn accurate representations
of bundles, we utilize the existing bundle-item affiliation information. This allows
the model to understand the interdependencies among items within a bundle,
and incorporate this information into the learned representations of bundles.
Similar to Eq. 7, the embedding updating rules for bundle b and item i can be
formulated as follows:

el+1
b,q = σ(W3(αbbe

l
b,q +

∑
i∈Nb

αbie
l
i,q)),

el+1
i,q = σ(W3(αiie

l
i,q +

∑
b∈Ni

αibe
l
b,q)).

(8)



In Equation 6-8, where W1,W2,W3 are trainable matrices, σ is non-linear
activation function. Nu, Nb, Ni represent neighbors of user u, bundle b and item
i, respectively. αij denotes the attention value between node i and node j.

3.3 Interaction Prediction and Optimization

Interaction Prediction. After we iterated the above propagation several times,
we connect different embeddings of the same entities to combine the information
received from different interactions for prediction:

e(l)u = e(l)u,o||e(l)u,p,

e
(l)
b = e

(l)
b,o||e

(l)
b,q,

e
(l)
i = e

(l)
i,p||e

(l)
i,q.

(9)

Then, we use the inner product to calculate the probability of the interaction
occurs:

ŷub = e(l)u ⊙ e
(l)
b ,

ŷui = e(l)u ⊙ e
(l)
i .

(10)

Structural Hint Learning. To enable the graph neural network to effectively
capture the topological structure of the user-bundle graph Gub, we propose a
structure loss Lstructure, which comprises two components: the node degree predic-
tion loss Ldegree and the neighbor degree sum prediction loss Lneigh. Specifically,
Ldegree employs the mean squared error (MSE) to supervise the model in predict-

ing the degree d̂i of each node, ensuring alignment with its ground-truth degree
di. Meanwhile, Lneigh focuses on predicting the sum of the degrees of each node’s
neighbors ŝi, measuring its deviation from the true value si. Ultimately, the
structure loss is defined as a weighted combination of these two terms, balancing
the representation of local and neighborhood structural properties. The node
degree prediction loss is formulated as:

Ldegree =
1

Nu +Nb

Nu+Nb∑
i=1

(
d̂i − di

)2

(11)

where Nu and Nb denote the number of user nodes and bundle nodes in the user-
bundle graph Gub, d̂i denotes the predicted degree of node i, and di denotes its
ground-truth degree. α and β are weight coefficients controlling the contributions
of Ldegree and Lneigh to the total structure loss Lstructure. Similarly, the neighbor
degree sum prediction loss is given by:

Lneigh =
1

Nu +Nb

Nu+Nb∑
i=1

(ŝi − si)
2

(12)



where ŝi denotes the predicted sum of the degrees of the neighbors of node i,
and si denotes its ground-truth sum. The total structure loss combines these two
terms:

Lstructure = αLdegree + βLneigh (13)

where α and β are weight coefficients controlling the contributions of Ldegree and
Lneigh to the total structure loss Lstructure.

Optimization. As mentioned earlier, the user’s preference for a bundle is closely
tied to the items it contains. Building upon this idea, we employ multi-task
learning in the optimization process to enhance the recommendation capability
of our MGBR model. Specifically, we construct two triples: one comprises of a
user ui, an observed item vj , and an unobserved item vs, while the other consists
of a user ui, an observed bundle bk, and an unobserved item bt, formally as:

T1 = {(ui, vj , vs)|Ri,j = 1, Ri,s = 0} (14)

T2 = {(ui, bk, bt)|Ri,k = 1, Ri,t = 0} (15)

where Ri,j = 1 denotes that ui has interacted with vj ; otherwise, Ri,j = 0. Then,
we adopt the Bayesian Personalized Ranking (BPR) loss as the loss function [11].

Litem =
∑

(ui,vj ,vs)∈T1

−lnσ(ŷij − ŷis) (16)

Lbundle =
∑

(ui,bk,bt)∈T2

−lnσ(ŷik − ŷit) (17)

Combining with the item loss and bundle loss and structure loss, we reach the
objective function as follows:

L = λ1Litem + λ2Lbundle + λ3Lstructure + λ4 ∥Θ∥2 , (18)

where λ , Θ represent the regularization weights and the parameters of the model,
respectively.

4 Experiments

In this section, we conduct comprehensive experiments on two real-world public
datasets to evaluate our proposed method for bundle recommendation.

4.1 Experimental Settings

Datasets. We evaluate all the models on two public datasets, NetEase4 and
Youshu5. The statistics of the datasets are summarized in Table 1.

4 https://music.163.com
5 http://www.yousuu.com



NetEase: This dataset is obtained from NetEase Cloud Music [4], which is a
music app with a song list as the core structure, the largest and best quality song
list library in China. In this dataset, songs are items and song lists are bundles.

Youshu: This dataset is collected from Youshu [7], which is a Chinese book
review site. Similarly to Netease, every bundle is a list of books, and the items
are books.

Evaluation Metrics. For each user in the training and testing sets, we treat
bundles and items with which the user has not interacted as negative samples.
The interactions between user and bundle pairs are scored by the trained model
and ranked in descending order. In addition to the Recall@K, we also adopted
normalized discounted cumulative gain (NDCG@K for short) to evaluate the
effectiveness of the top-K bundle recommendation.

Table 1: The statistics of the datasets.

Dataset NetEase Youshu

#Users 18,528 8,039

#Bundles 22,864 4,771

#Items 123,628 32,770

#U-B interactions 302,303 51,377

#U-I interactions 1,128,065 138,515

#B-I affiliations 1,778,838 176,667

Baselines. We compared our model with the following representative methods:
MFBPR [11]: BPR is a pairwise ranking algorithm based on implicit feedback.

This model is a standard baseline for top-N recommendation tasks by taking
advantage of BPR loss.

DAM [7]: This is a deep attention-based multi-task model that uses the
representation of items in a factorized attention network aggregation bundle.

BGCN [8]: This is the first to propose a graph neural network model to solve
the problem of bundle recommendation.

RNBR [10]: This model considers the interactions of neighbors and uses a
relational graph neural network to inject different relations into the representation
of bundles and items.

MIDGN [12]: it formulates user preference into local and global views and
leverages the intent disentanglement to learn user’s intents for bundle recommen-
dation.

LightGCL [13]: this method utilizes a novel framework of SVD to generate
augmented views for self-supervised contrastive learning.



Table 2: Performance comparison of MGBR and the baselines.

Model
NetEase Youshu

Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80 Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@80 NDCG@80

DAM 0.0411 0.0210 0.0690 0.0281 0.1090 0.0372 0.2082 0.1198 0.2890 0.1418 0.3915 0.1658

BGCN 0.0491 0.0258 0.0829 0.0346 0.1304 0.0453 0.2347 0.1345 0.3248 0.1593 0.4355 0.1851

RNBR 0.0644 0.0327 0.1023 0.0431 0.1602 0.0551 0.2732 0.1571 0.3814 0.1857 0.4937 0.2116

MIDGN 0.0678 0.0343 0.1085 0.0451 0.1623 0.0564 0.2682 0.1527 0.3712 0.1808 0.5024 0.2126

LightGCL 0.0705 0.0371 0.1122 0.0481 0.1712 0.0594 0.2710 0.1556 0.3693 0.1827 0.4995 0.2178

CrossCBR 0.0844 0.0458 0.1255 0.0567 0.1794 0.0679 0.2842 0.1670 0.3787 0.1939 0.5002 0.2208

MGBR 0.0855 0.0471 0.1288 0.0584 0.1821 0.0696 0.2900 0.1705 0.3963 0.1998 0.5134 0.2253

%Improve 1.30% 2.84% 2.63% 3.00% 1.51% 2.50% 2.04% 2.10% 4.65% 3.04% 2.64% 2.04%

CrossCBR [14]: it utilizes a cross-view contrastive learning to achieve cross-
view cooperative association based on the BGCN view construction method.

Parameter Settings. Our model is implemented in Pytorch with DGL6

package. We initialized the model parameter by the Xavier [16] initializer and
took the Adam [17] as the optimizer. The dimension of the embedding vector is
set to 64. The batch size is set to 2048. In terms of the hyperparameters, the
learning rate is searched in {0.0001,0.0003,0.001,0.01} and regularization weight
is tuned in {0.0001, 0.001}.

4.2 Performance Comparison

Table 2 shows the experimental results of all methods and the improvements,
which are calculated between our proposed method and the basic baselines. The
optimal results are marked in bold and the underline values are the suboptimal
results. We can observe that our model outperforms all baselines in terms of the
Recall@K and NDCG@k metric. Specifically, on the Recall@k metric, MGBR
outperforms the best baseline by 1.30% - 2.63% on the NetEase dataset and 2.04%
- 4.65% on the Youshu dataset. As for the NDCG@K metric, the improvements
over the best baseline by 2.84%, 3.00%, and 2.50% for NDCG@20, NDCG@40,
and NDCG@80 on the NetEase dataset and improve by 2.10%, 3.04%, and 2.04%
respectively on the Youshu dataset.

The improvement mainly comes from the following reasons:
1) Instead of building a unified heterogeneous graph, we construct three bipartite
graphs based on multi-interaction. This approach avoids redundancy in learning
and hinders preference modeling, allowing for a more effective representation of
the various complex relationships among users, items, and bundles.
2) Based on a graph attention network, MGBR effectively leverages the higher-
order relationships between different entities. The attention mechanism in MGBR
allows for the learning of influence values for different interactions, recognizing
that not all interactions have the same impact on users.
3) The incorporation of two graph structure losses, namely the node degree
prediction loss and the neighbor degree sum prediction loss , enhances the model’s

6 https://www.dgl.ai.



Table 3: Performance comparison of Structural Hint Learning on MGBR.

Model
NetEase Youshu

Recall@20 NDCG@20 Recall@40 NDCG@40 Recall@20 NDCG@20 Recall@40 NDCG@40

w/o Both 0.0794 0.0395 0.1187 0.0483 0.2784 0.1583 0.3712 0.1842

w/o Lneigh 0.0834 0.0434 0.1245 0.0553 0.2871 0.1667 0.3851 0.1926

w/o Ldegree 0.0821 0.0426 0.1219 0.0523 0.2848 0.1627 0.3795 0.1874

MGBR 0.0855 0.0471 0.1288 0.0584 0.2900 0.1705 0.3963 0.1998

capability to preserve the topological properties of the graph. These losses ensure
that the learned representations align with both local node connectivity and
broader neighborhood structures, further improving the robustness and accuracy
of the model.

4.3 Ablation Study

Effects of graph structural loss. To assess the contributions of the structural
losses in the user-bundle graph Gub, an ablation study is conducted by comparing
the full model, which incorporates both the node degree prediction loss Ldegree

and the neighbor degree sum prediction loss Lneigh, against variants where each
loss is individually removed—denoted as w/o Ldegree and w/o Lneigh—as well as a
baseline with both losses excluded w/o Both. Table 3 results reveal that removing
Ldegree leads to a more pronounced performance decline compared to the removal
of Lneigh,When Ldegree is removed, the model loses its explicit supervision on
predicting the local connectivity of nodes in Gub. As Ldegree ensures that the
embeddings reflect the ground-truth degrees of users and bundles (e.g., user
activity or bundle popularity), its absence may weaken the model’s ability to
distinguish highly active users or popular bundles.

Effects of graph attention mechanism. In this part, we verified the validity
of the graph attention mechanism in our model. We compared our model with
the model based on graph convolution network (GCN) [18]. Figure.3 shows the
results of the comparison, where GCN-HG is applied to the three homogeneous
graphs with GCN. From the results, we can observe that the model MGBR
based on the graph attention mechanism is superior to the GCN-based model
in all metrics. The results show that the model performs better than GCN-
HG by 6.51% - 34.43% and 5.15% - 7.34% on the NetEase dataset and Youshu
dataset, respectively. The graph convolution network aggregates information from
connected neighbors equally. In contrast, our model better aggregates information
by calculating the attention values between neighbors. This demonstrates that
the graph attention mechanism is essential to capture the varying degrees of
influence that different interactions may have on users’ preferences.



Effects of multi-task learning. We compare the performance of MGBR
under training with no item loss, and item loss. As shown in Fig. 4, the model
added item-level loss performs better than only trained with bundle-level loss by
2.44% - 21.93% and 6.03% - 9.21% on the Netease dataset and Youshu dataset,
respectively.
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Fig. 3: Performance with different graph neural network.
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Fig. 4: Performance with different loss functions.

5 Related Work

Product bundling is a widely-utilized marketing tactic employed by brick-and-
mortar retailers as well as e-commerce platforms[19]. It typically involves grouping
together a curated collection of related products that users consume as a whole
under circumstances, e.g., limited total price[20, 21], or specific intents[22, 23].



Bundle recommendation focuses on capturing the relationship between users,
items and bundles, and recommending bundles to users. LIRE [6] automatically
recommends a list of relevant items for each user based on the user’s history of
interaction with lists and items. Cao et al. [4] propose a joint learning framework
for the item and bundle recommendation using embedding factorization models.
Chen et al. [7] propose a factorized attention multi-task model. Empowered by the
success of the graph neural networks in the node representing, it is widely used in
bundle recommendation. BGCN [8] constructs the two kinds of interaction and
affiliation into the graph and utilizes the GCN to learn the representation of user
and bundle. IHBR [9] considers the co-purchase and co-occurrence information
within items for modeling intention-oriented hierarchical representations. Wang et
al. [10] present a relational graph neural network with neighbor interactions for
bundle recommendation.Recent research has significantly advanced bundle rec-
ommendation by incorporating contrastive learning techniques. MIDGN [12]
partitions user-bundle preferences into local and global views and employs an
intent decomposition strategy to model multiple latent intents, with its dual-view
contrastive learning approach effectively enhancing recommendation performance.
CrossCBR [14], built upon the BGCN [8] framework, innovatively constructs
bundle and item views, leveraging cross-view contrastive learning to improve rep-
resentation affinity among similar users while demonstrating that: (1) multi-view
formulations are critical for capturing hierarchical user preferences, and (2) cross-
view contrastive mechanisms, by explicitly modeling collaborative associations,
substantially boost performance. Building on this, Ma et al. [15] enhance the
multi-view architecture and propose MultiCBR, an optimized contrastive learning
framework tailored for multi-view scenarios. By adopting an “early fusion, late
contrast” strategy, MultiCBR effectively captures user preferences and addresses
the sparsity issue in bundle-item associations.

6 Conclusions

We propose a graph neural network-based model called MGBR for bundle
recommendation. To avoid information overlap, we differentiate the representation
of interactions and affiliations between users, items, and bundles. MGBR utilizes
an attention mechanism with residual networks to learn representations from
a homogeneous graph, considering the dependencies among different entities.
Moreover, we leverage user-item and user-bundle information simultaneously
to enhance the performance of bundle recommendations. Meanwhile, we design
dual structural loss components to jointly optimize node degree distribution and
neighborhood topology in the user-bundle graph. Our experimental results on two
real-world datasets demonstrate the effectiveness of MGBR in providing accurate
and personalized bundle recommendations. In the future, we will explore user
intents among the multiple interactions and further consider how to generate
high-quality bundles.
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