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RAHG: A Role-Aware Hypergraph Neural Network
for Node Classification in Graphs

Kunhao Li , Zhenhua Huang , and Zhaohong Jia , Member, IEEE

Abstract—Graph neural networks have been widely studied and
applied to node classification in graph-format datasets in recent
years. Traditional graph neural networks mainly consider the
adjacency characteristics of nodes and fail to learn rich role repre-
sentations of nodes. Existing role representations methods of nodes
are mostly in unsupervised approaches, resulting in unsatisfactory
performance in downstream tasks. A graph can be reorganized as
a hypergraph, in which the role characteristics of nodes are more
intuitively represented. Based on this, we propose a role-aware
hypergraph neural network (RAHG) that utilizes hypergraphs
and an attention mechanism to fuse nodes’ role and adjacency
representations. A residual network is also applied to relieve the
smoothing problem between layers in the model. The model adjusts
the weights on the role and adjacency representations according
to the characteristics of the graphs. RAHG significantly improves
the prediction performance compared with existing graph neural
networks on seven datasets, with accuracy increased by up to 12.1%
on the node classification task in graphs.

Index Terms—Graph neural networks, graph representation,
node classification, hypergraph.

I. INTRODUCTION

MANY real-world datasets are represented in graph for-
mat, e.g., interactions between users in social net-

works[1], [2], bundling relationships between users and commu-
nities in e-commerce[3], [4], sensor connections in the Internet
of Things [5], and molecular networks [6], [7], etc. Graph neural
networks (GNNs) have advantageous performance compared
with traditional neural networks on many applications [8], [9].
Classic GNNs include GCN [10], GAT [11], GraphSAGE[12],
VGAE[13] and GIN [14], etc. GNNs learn the nature of spatial
features in graph datasets and improve the node and graph
representations of neural networks. Most GNNs adopt the basic
idea that aggregates neighboring information based on the mes-
sage passing [15], which is based on gathering neighboring or
adjacent node features in graphs.

However, nodes have different social roles or functionalities,
and the nodes with similar roles or functionalities are not always
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Fig. 1. A toy example graph. Nodes with the same color have similar roles.
Nodes A and B, C and D are not directly connected. It is difficult for traditional
GNNs to build a relationship between these nodes with similar roles.

directly connected, for instance, nodes A and B, D and E
in Fig. 1. Traditional GNNs (including GCN [10], GAT [11],
GraphSAGE [12], etc.) obtain the feature embedding of central
nodes by aggregating the features of neighbor nodes, which
produces representations containing information of local sub-
graphs. Nevertheless, graph aggregation in traditional GNNs
has two limitations: (1) Hard to produce node representations
that contain rich role characteristics; (2) Difficult to build a
relationship between nodes with similar roles far away or not
directly connected. The role of a node can be its semantic
meanings in the real world, e.g., student, advisor, and manager,
or structural roles in networks, e.g., structural hole spanner,
opinion leaders [16]. Role representation learning of nodes has
been explored in unsupervised ways [17], [18], [19]. However,
due to the limited performance of unsupervised methods, they
produce unsatisfactory results in downstream tasks [12]. More-
over, multi-layer GNNs based on adjacency suffer from the
over-smoothing problems that nodes share similar features after
several message passing layers.

The inputs of traditional GNNs are mostly typical graphs,
which reflect adjacency relationships of nodes and ignore role
relationships between nodes. On the contrary, hypergraphs [20]
can be constructed in various ways based on the typical graph
structure. The hypergraph adjacency contains more prosperous
relations of nodes and clusters, making aggregation computa-
tions in graph neural networks more effective in the role and
adjacency representations.

To address the limitations mentioned above of graph neu-
ral networks, inspired by the hypergraph [20], we propose a
Role-Aware HyperGraph Neural Network (RAHG) that con-
siders role representations into graph neural networks. RAHG
aggregates node representations of role and adjacency from
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high-order perspectives under hypergraph construction meth-
ods. We design two approaches to construct hypergraphs, which
aggregate node information from the degree and neighbor lev-
els. The nodes with similar roles are more closely connected
in hypergraphs. RAHG applies an attention mechanism with
learnable weights to combine the nodes’ role and adjacency
representations. By hypergraph convolution layers, the structure
of hypergraphs is learned in the training process. Furthermore,
the residual network is also applied to relieve the smoothing
problem between hypergraph convolution layers. Compared
with traditional GNNs, RAHG adds role characteristics and
utilizes a more efficient aggregation method. RAHG is suitable
for any node representation task with adjacency structure and
role information. The main contributions are as follows1:
� We propose a novel role-aware hypergraph neural network

RAHG by introducing an attention mechanism and hyper-
graph convolution layers that aggregate role and adjacency
representations of nodes to address the limitations of cur-
rent graph neural networks. The residual network is also
applied in RAHG to alleviate the over-smoothing problem
effectively.

� Two hypergraph construction approaches based on node
links and node degrees are proposed. Both approaches
gather nodes with similar roles closer to high-order per-
spectives and benefit role representation learning in GNNs.

� A new real-world graph dataset that records the relation-
ships between advisors and graduate students in a univer-
sity is built, which can be used to verify the performance
in the node classification task.

� Extensive experiments on the new dataset and the other four
public datasets demonstrate that RAHG highly improves
the accuracy of node classification by large margins up to
12.1 (19.9% relative improvement).

The structure of this paper is organized as follows. In Section
II, we review related works about graph neural networks, graph
role representation, and hypergraph neural networks. Section III
defines the problem of node classification and explains role and
adjacency embeddings. In Section IV, details of the proposed
model are introduced. Extensive experiments and analysis are
represented in Section V. We summarize the works in Section VI.

II. RELATED WORKS

Recent works related to our research, including graph neu-
ral networks, graph role representation, and hypergraph neural
networks are briefly introduced in this section.

A. Graph Neural Network

The graph neural network is a kind of neural network based
on message-passing applied to the graph structure. GCN [10]
and ChebyNet [21] apply neighbors propagation to aggregate
the adjacency information. The GAT [11] introduces an attention
mechanism to aggregate neighboring features. GraphSAGE [12]
extends GCN to an inductive framework and makes it suitable for

1All the codes and datasets are published on https://github.com/PreckLi/
RAHG.

unseen nodes. LightGCN [22] learns user and item embeddings
by linearly propagating features across the user-item interaction
graph. Yang et al. [23] unified the hyperbolic graph neural
networks into a general framework and summarized the variants
of each component. SAT [24] exploits existing GNNs to extract
subgraph representations and improve performance relative to
the GNNs. Feature aggregation methods of these GNNs are
based on adjacency message-passing.

Besides adjacency feature aggregations, some graph neural
networks consider nodes’ location or identity characteristics
not applied in the above methods. ID-GNN [25] inductively
considers node identities to embed node features in the message-
passing process. The location-aware graph neural network (P-
GNN) [26] is proposed for computing location-aware node
embeddings. Li et al. [27] proposed GLOGNN and GLOGNN++
to learn a coefficient matrix to capture the correlations between
nodes and perform neighborhood aggregation based on it. Xie
et al. [28] proposed an end-to-end scale-aware graph neural
network (SAGNN) by reasoning about cross-scale relationships
between query images supported by few-shot semantic segmen-
tation. Xu et al. [29] proposed a Graph wavelet Neural network
(GWNN), which uses graph wavelet transform to address the
shortcomings of previous spectral graph CNNs that rely on graph
Fourier transform. These GNNs achieve efficacious results but
do not explicitly address the relationship between higher-order
aggregation and role information.

B. Graph Role Representation

Graph representation (i.e., Graph Embedding or Network Em-
bedding) is a task of mapping nodes to low-dimension vectors
that keep the structural information in original graphs [30].
Deepwalk [31] and Node2vec [32] proposed a random walk
strategy and feed the generated node sequences into Skip-Gram
[33] to produce the adjacency-based embeddings. LINE [34]
is an edge-sampling algorithm that improves the effectiveness
and efficiency of network embedding. The design of SDNE
[35] extends LINE and optimizes nodes’ first-order and second-
order similarities by deep learning-based methods. Ying et al.
[36] proposed the Graphormer to better model graph-structured
data by the Transformer. LCNN [37] builds receptive fields
by learning the position of each node based on structural and
feature information. In role representations of nodes in graphs,
Struc2vec [38] applies a hierarchical structure to measure node
similarity at different scales and builds a multi-layer graph to
encode adjacency similarity. Although the role characteristics
of nodes are reflected, the computation of the multi-layer graph
is time-consuming. Graphwave [19] represents the role of nodes
through a heat wavelet diffusion.

C. Hypergraph Neural Network

Hypergraph learning was introduced in [39] as a propaga-
tion process on hypergraph structure. Compared with the tradi-
tional simple graph, a hypergraph can encode high-order data
correlation (beyond pairwise connections) using its degree-free
hyperedges [40]. Feng et al. [20] and Yadati et al. [40] incorpo-
rated hypergraphs into learning graph neural networks for the
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TABLE I
NOTATIONS IN RAHG.

first time. Bai et al. [41] proposed a hypergraph convolutional
neural network and a hypergraph attention network to enhance
the capacity of representation learning. Ji et al. [42] proposed
a two-channel hypergraph convolutional network framework
DHCF for the collaborative filtering of recommend systems.
Chien et al. [43] proposed a generalization framework for hyper-
graph neural networks, which adaptively learns the propagation
mode suitable for data. Yang et al. [44] proposed an attention
hypergraph neural network that applies an attention mechanism
to filter essential attributes. Hypergraph neural networks have
been developed and applied in different domains. However, they
are not used to deal with node representations containing rich
role features to our best knowledge.

III. PRELIMINARIES

This section gives the problem definition of RAHG and the
specific explanation of role and structure embedding.

A. Problem Description

An undirected graph is denoted asG = (V,E,A), whereV =
{v1, v2, . . . , vN} denotes the node set, E denotes the edge set,
and A ∈ RN×N denotes the adjacency matrix. Xr ∈ RN×Fr is
the role representation, Xa ∈ RN×Fa is the adjacency repre-
sentation. Y ∈ RN is the label of nodes with M categories. The
GNNs produce nodes representation Z ∈ RN×Fh and predict
the nodes’ label. The symbols used in this paper and their
definitions are summarized in Table I.

B. Role and Adjacency Embedding

The initial roles and adjacency embeddings of nodes gener-
ated by the graph structure through wavelet diffusion [19] and
random walk [32] are used as input features of RAHG. This
subsection describes the generation process for both types of
embeddings.

1) Role Embedding: For a given graph’s Laplacian ma-
trix L = D −A = UΛUT , The corresponding spectral graph
wavelet can be calculated as Ψ = Ue−sΛUT , where the column
corresponding to node i is:

Ψi = Ue−sΛUT δi (1)

δi = 1(i) is the one-hot vector for node i, Ψi is regarded as a
set of random variables, based on (1), its characteristic function

can be calculated as follows:

φi(t) =
1

N

N∑
m=1

eitΨmi (2)

The role representations of i at time t are:

Xr = [Re(φi(ti)), Im(φi(ti))]t1,...,td ∈ R2d (3)

where Re denotes the real parts and Im denotes the imaginary
parts.

2) Adjacency Embedding: The adjacency embeddings of the
nodes are calculated by Node2vec. Given the current node v, the
probability of visiting the next node x is:

P (ci = x|ci−1 = v) =

{
πvx

Z if (v, x) ∈ E

0 otherwise
(4)

πvx = αpq(t, x) · wvx is the transition probability between node
v and x before normalization, where wvx is the edge weight
between node v and x. Z is the normalization constant. Two
hyperparameters p and q are used to calculate the transition
probability:

αpq(t, x) =

⎧⎪⎨
⎪⎩

1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

(5)

dtx represents the shortest path between node t and node x. The
node sequences obtained by random walk are learned by the
Skip-Gram[33] to generate the adjacency embedding Xa.

IV. PROPOSED METHOD

The overall framework of RAHG is shown in Fig. 2. The
workflow is divided into three parts. In the first part, we encode
the graph structure and get the initial role and adjacency repre-
sentations by Graphwave [19] and Node2vec [32], respectively.
We also construct a hypergraph from the input graph. Based on
these, we obtain a fusion embedding via an attention mechanism.
Then the fusion embeddings and hypergraph adjacency matrix
are put into the multi-layer hypergraph convolutional networks
for iteration computations. We classify the nodes with the trained
node representations in the last part.

A. Hypergraph Construction

In this section, we describe two ways of constructing hy-
pergraphs in detail. The constructed hypergraphs are put into
the subsequent hypergraph convolution networks for feature
aggregations.

1) Hypergraph Description: An edge in typical simple
graphs connects two nodes, while a hyperedge in hypergraphs
can connect multiple nodes with similar properties as a hyper-
edge. We can reorganize a simple graph into a hypergraph. Given
a hypergraph GH = (VH , EH ,WH), H is written as h(v, e),
h(v, e) equals 0 or 1, which means whether node v belongs to a
hyperedge e. VH is the node set, EH is the hyperedge set. WH

is the hyperedge weights matrix. The degree of each node is
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Fig. 2. Framework of the proposed RAHG.

Fig. 3. Examples of hypergraph construction.

expressed as:

d(vi) =
∑
ei∈E

h(vi, ei)w(ei) (6)

the degree of each hyperedge is written as:

d(ei) =
∑
vi∈V

h(vi, ei) (7)

Dv and De are used to represent the degree matrix of nodes
and hyperedges in a hypergraph.

The hypergraph constructions of RAHG are shown in Fig. 3.
2) Hypergraph by Node Link: This method constructs a hy-

pergraph Gl
h based on neighbor links of a graph G. Gl

h connects
all neighbors of the central nodes to form a hyperedge. The
hypergraph structure Hl ∈ R(N×N l

E) is generated eventually,
whereN is the number of nodes inG andN l

E is the number of hy-
peredges. Dl

v and Dl
e represent the node and edge degree of Hl.

3) Hypergraph by Node Degree: A hypergraph Gd
h is con-

structed by node degree. A set of nodes with the same degree
is classified as a hyperedge. The structure of the generated
hypergraph is Hd ∈ R(N×Nd

E), where N is the number of nodes
and Nd

E is the number of different degrees of nodes. Dd
v and Dd

e

represent the node and the edge degree of Hd.

B. Role-Aware Hypergraph Neural Network

Based on the constructed hypergraphs, we propose a role-
aware hypergraph neural network. The pseudocode of RAHG is
given in Algorithm 1.

1) Attention Mechanism: RAHG introduces an attention
mechanism to make the neural network adaptively cooperate
with two types of representations, which benefits downstream
tasks. Specifically, the role features are embedded to X̂r by (8).
The attention weight αr is as follows:

X̂r = XrWr + br (8)

αr = tanh X̂rq (9)

α̂r =
exp(αr)

exp(αr) + exp(αa)
(10)

Xf = α̂rX̂r + α̂aX̂a (11)

where Wr ∈ RFr×Fh and br ∈ RFh are the weight matrix and
bias. q ∈ RFh is the attention vector, Fh is the hidden size
of layers. tanh is chosen as the activation function to prevent
the gradient from disappearing and improve the convergence
speed. The attention weights αr ∈ RN of role embedding can
be calculated by (9). Then in (10), softmax is used to normalize
attention weights of the role and adjacency embeddings. The
final fusion embedding Xf ∈ RN×Fh is calculated by (11)
and used as the input features of the hypergraph convolutional
networks.
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Algorithm 1: Framework of RAHG.

2) Hypergraph Convolution Layer: The hypergraph convo-
lutional network takes the fusion features generated by the
attention mechanism based on (11) as the initial input. The
convolution formula of node fusion features X based on HGNN
is as follows:

Xl = σ
(
D−1

v HWHD−1
e HTD−1

v Xl−1θl−1

)
(12)

whereWH is the weight matrix of hyperedges,Dv andDe are the
degree matrices of nodes and hyperedges, H is the hypergraph
structure, Xl−1 is the input of lth layer, Xl is the output of
lth layer, θl−1 is the parameters of lth layer, σ is the nonlinear
activation function.

3) Residual Network: To alleviate the over-smoothing prob-
lem of GNNs, we map the raw representation by down-sampling
and add raw features to the output embedding of the last HGNN
layer. The calculation formula is as follows:

Z = Xlast +X1Wres (13)

where Wres ∈ RFh×Fh and X1 ∈ RN×Fh are weight matrix
and the raw representation, respectively. Xlast ∈ RN×Fh is the
outputs of the last layer, Z ∈ RN×Fh is the final representation
after the residual network.

C. Classification

Z is fed into a dense network with softmax to predict value
Ŷ :

Ŷ = softmax(ZWm + bm) (14)

whereWm ∈ RFh×M and bm ∈ RM are weight matrix and bias,
respectively. The loss function is:

L = −
∑
v∈V

M∑
i=1

Y ln Ŷ + λ ‖θ‖2 (15)

where λ denotes a regularization parameter and θ denotes the
parameters of the model.

V. EXPERIMENTS

In this section, extensive experiments on datasets of different
scales and approaches are conducted to verify the performance
of the RAHG.

A. Experiments Settings

1) Datasets: The model’s performance is tested in a new
dataset and six public datasets. Statistics of the datasets, includ-
ing heterogeneity and assortative coefficients [45], are summa-
rized in Table II. Visualizations of datasets are shown in Fig. 4.
The details are as follows:
� ENZYMES: The datasets of 600 tertiary protein structures

were obtained from the BRENDA enzymes database [46].
We selected the enzymes with more than 90 nodes, with
the indexes 118, 123, 295, 295, 296, and 297. Each enzyme
graph has two types of nodes. We use E118 to represent
ENZYMES118 in short. The other ENZYMES datasets are
represented in the same way.

� Internet-industry-partnerships (IIP) [47]: The nodes in the
network represent companies competing in the internet
industry. If two companies have announced joint ventures,
strategic alliances, or other partnerships, they are con-
nected by an edge. The nodes’ three tags include Content,
Infrastructure, and Commerce.

� TerroristRel: A public dataset collected from the PIT
repository [48]. This dataset contains information about
terrorists and their relationships. A vector of 0/1 values
describes each relationship.

� Cora [49]: It includes 2708 scientific publications on ma-
chine learning, nodes are divided into seven categories.

� Citeseer [49]: It includes 3327 scientific publications, and
nodes are divided into six categories.

� Pubmed [49]: It includes 19717 scientific publications on
diabetes from the Pubmed database, and nodes are divided
into three categories.

� Adv-Stu: The Adv-Stu dataset is a real-world network
dataset constructed in this paper. There are 44 graduate
students and 26 advisors (professors) at Anhui University,
Hefei, China. If an advisor instructs a student, there is a
connection between them. If two advisors are in the same
research group, they also have a connection. The nodes in
the graph are labeled as advisors and students. The structure
of the graphs is represented in Fig. 4(f), index from 0 to 43
indicating students and 44 to 69 indicating advisors. Colors
of nodes present roles.

The nodes composed of ENZYMES are divided into primary
and secondary ones as described in [46]. The IIP has a vast
market relationship between big companies and startups [47].
There are differences in the status of factions in TerroristRel
[48]. In Cora, Citeseer, and Pubmed, the core papers are widely
cited by other papers [49]. Adv-Stu also contains two kinds of
role nodes: supervisor and graduates. The above datasets from
different domains and sizes can effectively reflect the adjacency
and role characteristics of nodes, which are suitable for the
verification of the effectiveness of models.
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TABLE II
DATASETS

Fig. 4. Visualization of datasets. (a) E118. (b) E123. (c) E295. (d) E296. (e) E297. (f) Adv-Stu. (g) IIP. (h) TerroristRel. (i) A subgraph of Cora. (j) A subgraph
of Citeseer. (k) A subgraph of Pubmed.
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TABLE III
AVERAGE PERFORMANCE ON NODE CLASSIFICATION

2) Baselines: We compare the RAHG with the following
strong baselines:
� Role: Role representations of nodes by GraphWave [19]

are used as input features of SVM[50] with RBF (Radial
Basis Function) for the node classification task.

� Adj: Adjacency characteristics of nodes by Node2vec [32]
are used as input features of the classifier by the SVM.

� Role+Adj: Role and adjacency features are concatenated
as the input features of the classifier by the SVM.

� Deepwalk: Deepwalk [31] is a graph embedding method
that produces node representations by randomly walking
and Skip-Gram [33] in a graph. We apply the same
classifier.

� Struc2vec: Struc2vec [38] defines vertex similarity from a
role-based biased Markov walks.

� Role+GCN: The role embeddings by GraphWave [19] as
the input features of GCN for classification.

� Adj+GCN: The adjacency embeddings by Node2vec [32]
as the input features of GCN for classification.

� Role+GAT: The role embeddings by GraphWave [19] as
the input features of GAT for classification.

� Adj+GAT: The adjacency embeddings by Node2vec [32]
as the input features of GAT for classification.

� Role+HGCN: The role embeddings by GraphWave [19] as
the input features for the hypergraph convolutional network
[20] for classification.

� Adj+HGCN: The adjacency embeddings by Node2vec [32]
as the input features the same hypergraph convolutional
network for classification.

3) Parameter Settings: For the RAHG, we apply two
hypergraph convolution layers and one fully connected layer. p
and q in the Node2vec are both set to 1.0. Fr and Fa are both
set to 128. Adam is applied as the optimizer. The initial learning
rate is set to 0.003. The coefficient of dropout is chosen from

TABLE IV
MAXIMUM PERFORMANCE ON NODE CLASSIFICATION

{0.3, 0.4, 0.5, 0.6, 0.7}. The hidden size Fh is set from {60, 80,
100, 120, 140}. The weight decay coefficient is set to 5e-4. For
the compared baselines, we set the parameters to their default
values.

B. Node Classification

The node classification task is used to verify the performance
of RAHG and baselines. Table II shows that the ENZYMES
and TerroristRel have imbalanced labels. Uniform partition of
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TABLE V
ABLATION STUDY ON NODE CLASSIFICATION

these datasets will make the model more focused on classes
with more data samples. We divided the train and test sets by
random sampling for imbalanced labels between categories in
imbalanced datasets. Specifically, the larger node set is randomly
sampled to keep the ratio to the smaller node set within 1:0.33.

Note that the original features in Cora, Citeseer, and
Pubmed are not utilized for node classification (only structural
features of graphs are applied), so the performance of some
baselines is different from the original papers [10]. Due to
the small scale of the graph structure of ENZYMES and
Adv-Stu, the prediction accuracy can be serendipitous. To
make experiments convincing, we report models’ average
and maximum performance by running models 100 times on
the ENZYMES and Adv-Stu datasets, 50 times on IIP and
TerroristRel datasets, and ten experiments on Cora, Citeseer,
and Pubmed under the same data preprocessing. The graph
structure of IIP, TerroristsRel, Cora, Citeseer and Pubmed is
large, and the best performances on these datasets are expected.
The average micro-F1 and the best Micro-F1 are presented.

The results are listed in Tables III and IV. We use
Micro-F1 as the indicator in the node classification task.
Micro-F1 is a common-used metric in evaluating classi-
fication performance and can reflect the effectiveness of
models [10], [11], [14]. The Micro-F1 = 2(Recallmicro ×
Precisionmicro)/(Recallmicro + Precisionmicro). The Ab-
solute improvement = M1 −M2, the Improvement ratio =
(M1 −M2)/M2 × 100%, where M1 is the best performance of
RAHG and M2 is the best performance of the baselines. RAHG
achieves the best performance on all datasets and outperforms
all the other comparative models on the other datasets by large
margins. The neighbor links of the node better reflect the local
subgraph structure of the node in ENZYMES, IIP, TerroristRel,
Cora, Citeseer, and Pubmed. Moreover, the labels of nodes with
more complex neighbor adjacencies are easier to distinguish.
Thus, RAHG(l) outperforms RAHG(d) in these datasets.

In Adv-Stu, node classification pays more attention to the
number of nodes connected, and the performance of RAHG(d)
and RAHG(l) is almost the same. Both RAHG(d) and
RAHG(l) perform much better than strong baselines in terms
of structural role representation in hypergraph neural networks.

C. Ablation Study

We explore the contributions of each component of RAHG
in ablation studies. The results are listed in Table V. RAHG has
two variant models based on node degree and node link denoted

Fig. 5. How the learning rate impacts the performance. (a) EN-
ZYMES(RAHG(d)). (b) ENZYMES(RAHG(l)). (c) AS, IIP and TR(RAHG(d)).
(d) AS, IIP and TR(RAHG(l)). (e) CR, CS and Pb(RAHG(d)). (f) CR, CS and
Pb(RAHG(l)).

as RAHG(d) and RAHG(l), respectively. −{residual} and
−{attention} represent the removal of the residual network and
attention mechanism in RAHG, respectively. Removing residual
network and attention mechanism both lead to a reduction of
accuracy by large margins. These two mechanisms both play
significant roles in RAHG. It is worth noting that RAHG(d) is
severely regressed in three large citation network datasets after
removing the residual network. The residual networks add the
initial representations with global network information by the
graph representation learning methods, which benefits the global
optimization based on RAHG(d). However, the improvement
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Fig. 6. How the hidden size impacts the performance. (a) EN-
ZYMES(RAHG(d)). (b) ENZYMES(RAHG(l)). (c) AS, IIP and TR(RAHG(d)).
(d) AS, IIP and TR(RAHG(l)). (e) CR, CS and Pb(RAHG(d)). (f) CR, CS and
Pb(RAHG(l)).

by RAHG(l) is not obvious. The residual network is more
critical for RAHG(d) than for RAHG(l). In contrast, the
attention mechanism plays a more significant role inRAHG(l).

D. Parameters Sensitivity

AS, TR, CR, CS, and Pb denote Adv-Stu, TerroristRel,
Cora, Citeseer, and Pubmed in short, respectively. From Fig.
5, models have different sensitivities with learning rates. RAHG
on ENZYMES, Adv-Stu, and IIP achieve better performance
with a relatively larger learning rate. A lower learning rate is
recommended on Cora, Citeseer, and Pubmed.

The parameter sensitivities of RAHG(l) and RAHG(d) are
generally similar. RAHG(l) is less sensitive to the hidden size
Fh than RAHG(d) as shown in Fig. 6 on ENZYMES. The
performances are increased with larger hidden sizes from 60 to
140. A hidden size of 120 or 140 is recommended. For citation
networks, Cora and Citeseer are suitable for the larger hidden
size, while Pubmed performs better in smaller hidden sizes.

E. Visualization

The node-level representations are processed in two dimen-
sions by TSNE [51] to explore the differences between RAHG
and baselines. As shown in Fig. 7, the distributions of nodes
before training are both chaotic. After training, the nodes are

Fig. 7. Visualization of node classification task on ENZYMES295. (a) Before
training. (b) RAHG. (c) Deepwalk. (d) Struc2vec. (e) Role+GCN. (f) Adj+GCN.

Fig. 8. Attention weights.

more clustered according to their class labels through both
RAHG and Deepwalk. However, the nodes are more densely
gathered in RAHG.

The attention weights of RAHG after training in each dataset
are shown in Fig. 8. RAHG assigns higher weights to the
adjacency features on E118, E123, E296, E297, IIP, Cora,
Citeseer, and Pubmed. From Table II and Fig. 4, RAHG tends to
assign larger weights on adjacency representations in smaller
and sparser graphs. On the contrary, the model pays more
attention to the role features of nodes on E295, TerroristRel, and
Adv-Stu, which indicates that structural role might have more
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influence in higher-density graphs or datasets with higher-degree
nodes.

VI. CONCLUSION

Many nodes with similar roles are not always directly con-
nected in specific graph datasets. Traditional graph neural
networks fail to perform well in these datasets without consid-
ering role representations. We propose RAHG, a novel method
aggregating node role and adjacency representations by an at-
tention mechanism and hypergraph neural networks. Extensive
experiments demonstrate that the RAHG achieved SOTA per-
formances and outperforms baselines by large margins, which
provides a new perspective for designing new graph neural
networks. In addition, RAHG is scalable and can be used as
a general graph representation framework to apply to any net-
works with role characteristics.

However, many graphs are represented in heterogeneous
graphs. Nodes’ role and adjacency attributes have more complex
aggregations and restrictions on heterogeneous graphs. RAHG
cannot currently handle the association of heterogeneous roles.
In the future, we will extend RAHG to more types of graphs and
tasks.

ACKNOWLEDGMENT

The authors also thank PyG [52] for providing the framework
for our experiments.

REFERENCES

[1] S. Min, Z. Gao, J. Peng, L. Wang, K. Qin, and B. Fang, “STGSN–A
spatial–temporal graph neural network framework for time-evolving social
networks,” Knowl.-Based Syst., vol. 214, 2021, Art. no. 106746.

[2] S. Dhelim, N. Aung, and H. Ning, “Mining user interest based on
personality-aware hybrid filtering in social networks,” Knowl.-Based Syst.,
vol. 206, 2020, Art. no. 106227.

[3] M. Tan, W. Chen, W. Wang, A. Liu, and L. Zhao, “Intention-oriented
hierarchical bundle recommendation with preference transfer,” in Proc.
IEEE Int. Conf. Web Serv., 2021, pp. 107–116.

[4] Z. Li et al., “Hierarchical bipartite graph neural networks: Towards large-
scale e-commerce applications,” in Proc. IEEE 36th Int. Conf. Data Eng.,
2020, pp. 1677–1688.

[5] Y. Wu, H.-N. Dai, and H. Tang, “Graph neural networks for anomaly
detection in industrial Internet of Things,” IEEE Internet Things J., vol. 9,
no. 12, pp. 9214–9231, Jun. 2022.

[6] C. Q. Nguyen, C. Kreatsoulas, and K. M. Branson, “Meta-learning GNN
initializations for low-resource molecular property prediction,” in Proc.
4th Lifelong Mach. Learn. Workshop ICML, 2020.

[7] K. Huang, C. Xiao, L. M. Glass, M. Zitnik, and J. Sun, “SkipGNN:
Predicting molecular interactions with skip-graph networks,” Sci. Rep.,
vol. 10, no. 1, 2020, Art. no. 21092.

[8] J. Zhou et al., “Graph neural networks: A review of methods and applica-
tions,” AI Open, vol. 1, pp. 57–81, 2020.

[9] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, Jan. 2022.

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.
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