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Abstract

Human pose estimation from monocular images captured by motion capture cameras is a crucial task with a wide
range of downstream applications, e.g., action recognition, motion transfer, and movie making. However, previ-
ous methods have not effectively addressed the depth blur problem while considering the temporal correlation
of individual and multiple body joints together. We address the issue by simultaneously exploiting the temporal
information at both single-joint and multiple-joint granularities. Inspired by the observation that different body
joints have different moving trajectories and can be correlated with others, we proposed an approach called the
Multi-granularity jOint Tracing Transformer (MOTT). MOTT consists of two main components: (1) a spatial
transformer that encodes each frame to obtain spatial embeddings of all joints, and (2) a multi-granularity tem-
poral transformer that includes both a holistic temporal transformer to handle the temporal correlation between
all joints in consecutive frames and a joint tracing temporal transformer to process the temporal embedding of
each particular joint. The outputs of the two branches are fused to produce accurate 3D human poses. Exten-
sive experiments on Human3.6M and MPI-INF-3DHP datasets demonstrate that MOTT effectively encodes the
spatial and temporal dependencies between body joints and outperforms previous methods in terms of mean per
joint position error.
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1 Introduction

Recently, monocular 3D human pose estimation from
motion capture cameras has attracted considerable
attention in the computer vision community and Inter-
net of Things as it is crucial to various computer vision
and graphics applications, e.g., human pose tracking,
pose-guided image synthesis, AR/VR applications, and
style transformation [1]. The objective of human pose
estimation is to automatically locate the 3D positions of
human body parts, e.g., neck, and head, from an image
or a video of human motion captured by sensors and
cameras. However, since a single image can appear as a
2D projection of multiple 3D pose coordinates onto the
same 2D plane pose coordinate (known as the depth blur
problem), recent advances [2–11] have attempted utilize
2D sequences around a single frame to assist the predic-
tion from a 2D image to a 3D position. In this way, the
temporal and spatial information of multiple frames is
leveraged to address the problem.

Although existing methods [8, 10] have made
progress in addressing this problem from either a tem-
poral or spatial perspective, the temporal correlation
of joints has not been fully and effectively exploited in
Transformer-based video 3D pose estimation methods.
Poseformer [8] proposes a Transformer-based model that
estimates the body pose of a center frame from adjacent
frames (Fig. 1 (a)). It employs a temporal Transformer
to model the global features of all joints across multiple
frames altogether. However, different body joints (e.g.,
elbow, foot, etc) usually have different moving trajecto-
ries, and tracking all human joints simultaneously leads
to limited exploitation of spatial-temporal correlations.
To further exploit these correlations, MixSTE [12] sepa-
rates the temporal motion of each body joint over a long
sequence (Fig. 1 (b)). However, MixSTE discards the

dependencies of different body joints, which neglects the
fact that the movements of adjacent joints affect each
other.

To utilize spatial-temporal correlations of each joint,
we propose a novel paradigm that works along both lines,
i.e., capturing the temporal correlation of each joint and
all joints over multiple frames. Specifically, our proposed
paradigm aims to trace the motion of human body joints
over multiple frames at the granularity of individual
joints and all joints. To achieve this, we introduce a novel
Multi-granularity jOint Tracing Transformer (MOTT).
As shown in Fig. 1 (c), we first use a spatial Trans-
former to encode the spatial correlation of body joints in
each frame. To fully capture the temporal relationship of
human body joints, we design a novel Multi-Granularity
Temporal Transformer module (MGTT) to model com-
plicated dependencies of joints across multiple frames.
In particular, we model the holistic-granularity depen-
dencies of all joints across various frames via a holistic
temporal Transformer, which leverages features of mul-
tiple frames. Moreover, to model the local-granularity
temporal correlation of an individual joint, which often
has individual motions, we propose a joint-tracing tem-
poral Transformer that processes features of each joint
across multiple frames in a joint-wise manner. To com-
bine temporal information of joints at both granularities,
we use a regression head to decode the temporal features
for 3D joint positions.

We demonstrate the effectiveness of MOTT by exten-
sive quantitative and qualitative experiments on widely
adopted Human3.6M and MPI-INF-3DHP datasets.
Moreover, we evaluate the performance of our method in
real-world scenarios by collecting 30 in-the-wild videos.
The experiments show that the proposed method, which
better encodes the spatial and temporal relationship
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Fig. 1 Compared to previous methods that use the temporality
of all human body joints (a) or each joint (b) to model tem-
poral correlation features, our proposed MOTT (c) employs a
novel Multi-Granularity Joint Tracing Transformer architecture
that captures both holistic and local dependencies of human body
joints.

between body joints, accurately estimates human body
joints on these large-scale datasets.

The main contributions are as follows:

• We propose a paradigm that leverages the holistic
motion of related human body joints and the indi-
vidual motion of each joint to comprehensively model
human pose. This is achieved by learning multi-
granularity temporal correlation, which tackles both
the holistic temporal relationship and the joint-wise
temporal dependencies of human body joints.

• We introduce a multi-granularity temporal Trans-
former, which includes a holistic temporal Trans-
former that models frame-wise human joint features,
and a joint-tracing temporal Transformer that cap-
tures joint-wise human joint features.

• Extensive experiments and comparisons on different
datasets demonstrate that our method can effec-
tively estimate 3D human pose from a 2D observation
sequence accurately.

2 Related Work

2.1 Monocular Pose Estimation.

Recent advances in monocular pose estimation [13–19]
can be primarily divided into end-to-end and 2D-3D
lifting approaches.

2D-3D lifting-based methods: Martinez et al. [13]
proposed a simple yet very effective fully connected neu-
ral network model to predict 3D key point coordinates,
which verified the accuracy of the 2D joint one of the
sources of an error rate of pose estimation task. Based
on the recurrent neural network (RNN), Fang et al. [14]
used kinematics prior, symmetry prior, and coordination
before predicting human joint coordinates. Panda et al.
[20] exploited the deep ambiguity problem inherent in
the task and proposed a method for the emergence of
multiple feasibility hypotheses during 2D-3D regression.

End-to-end-based methods: Pavlakos et al. [21]
adopted an end-to-end method, using the convolution
module to output the heatmap of each joint point
according to the input RGB image. Sun et al. [22]
introduced a novel approach to structure-aware pose
regression, which utilizes a reparameterized pose rep-
resentation that is based on bones instead of joints.
Pavlakos et al. [23] proposed to use a weaker supervi-
sion signal provided by the ordinal depths of human
joints. Through research, it is found that, as the per-
formance of the 2D pose estimation algorithm becomes
more powerful, the method [12] of generating 3D pose
coordinates using an advanced 2D pose generator is bet-
ter than the end-to-end method. Liu et al. [19] proposed
the absorption graph to focus on specific spatio-temporal

relationships in point clouds and voxels. The Absorp-
tion Graph Convolutional Network (AGCN) utilizes
Graph Convolutional Networks (GCNs) to learn accu-
rate 3D pose estimation. Our method can be primarily
considered a 2D-3D lifting-based method.

2.2 Video Pose Estimation.

Video pose estimation provides lateral temporal infor-
mation and improves the accuracy of pose estimation
by using the spatial structure features of the human
body in the front and rear frames. Wang et al. [5] pro-
posed a UGCN model, which uses a graph convolutional
network (GCN) to capture short-range and long-range
motion information, And the smooth line constraint loss
function is added to the temporal sequence prediction.
Many methods combine the Transformer and pose esti-
mation task to improve the capture ability of the model
for long video input frames, Zhao et al. [24] introduced
a GraFormer model combining the Transformer model
with graph convolution, which fuses the information of
all joints to model the topological structure of the human
body. Inspired by MAE [25], San et al. [11] designed a
self-supervised pre-training P-STMO, which randomly
masked the joints of input sequences from both spa-
tial and temporal perspectives. Ma et al. [26] model the
skeleton structure of human beings from the perspective
of time and space to learn local and global character-
istics. They all address the problem of deep blur from
the perspectives of both time and space, without track-
ing the temporal information of joint nodes. Inspired by
this, we designed a dual-temporal module to learn the
temporal relationship between frames and the same joint
sequence, thus enhancing the representation capability
of human structural features.

2.3 Dual-Temporal Pose Estimation.

Modeling from the perspective of the spatial domain
or temporal-spatial domain is called single-temporal,
and modeling temporal information from local and
global, which is called dual-temporal. Hossain et al.
[27] introduced a recurrent neural network using a
Long Short-Term Memory (LSTM) unit with short-
cut connections to exploit temporal information from
sequences of human pose. Inspired by ViT [28], Li
et al. [10] proposed the Strided Transformer, which
continuously performs a hierarchical transformation on
input sequences and strided convolutions. However, the
extraction of the human body’s spatial topology infor-
mation and the learning of time series are not effective.
Dabral et al. [29] exploited the spatial-temporal rela-
tionships and constraints, e.g., bone-length constraint
and left-right symmetry constraint, to improve 3D HPE
performance from sequential frames. Different from the
above method, our MOTT employs a spatial Trans-
former module to learn the structural features of a single
frame independently, constructs a parallel module to
handle local and global joint modeling, and superim-
poses and fuses double-timing features to improve the
prediction accuracy of the center frame.

2.4 Transformer-Based Pose Estimation.

Previous works use RNN and its internal memory to pro-
cess input sequences of arbitrary time series. Fang et al.
[14] established a hierarchical structure of RNNs for gen-
erating final high-level 3D attitude grammars for coding
rational 3D human estimation. Convolutional neural
networks (CNN) also show the ability of multi-scale
feature extraction. Pavllo et al. [3] proposed a spatial-
temporal dilated convolution model. Compared with
RNN, it has higher accuracy, is simpler, and more effec-
tive, which has advantages in computational complexity
and the number of parameters. Moreover, the model
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has a stronger ability to capture long-term information.
Inspired by recent developments in vision transformers,
Zheng et al. [8] used a Transformer encoder instead of a
convolution module to design a spatial-temporal Trans-
former structure to predict 3D joint coordinates. Ma et
al. [30] and Shuai et al. [31] used Transformers to extract
multi-view features. Specifically, Ma et al. [30] designed
a unified Transformer architecture to fuse cues from
both current views and neighboring views. Shuai et al.
[31] proposed an MTF-Transformer to adaptively handle
varying view numbers and video length without camera
calibration in 3D Human Pose Estimation (HPE).

3 METHOD

MOTT consists of two key components: a Spatial
Transformer Encoder for learning the spatial structure
relationship of body joints in a single frame, and a
Multi-Granularity Temporal Transformer for exploiting
the temporal correlation of body joints over multiple
frames at two different granularities. The overall frame-
work of the proposed method is illustrated in Fig. 2.
At the cross-joint granularity, the Holistic Temporal
Transformer (HTT) seeks to learn the temporal rela-
tionship between related joints across multiple frames.
At the single-joint granularity, the Joint Tracing Tem-
poral Transformer (JTTT) aims to exploit the temporal
correlation of each joint over different frames.

3.1 Spatial Transformer Encoder

To prepare spatial information for modeling the tempo-
ral correlation of body joints at multiple granularities,
we deploy a spatial transformer encoder (STE) to learn
the structural correlations of all joints in every sin-
gle frame separately. Specifically, STE encodes the pose
coordinates of all skeletal points in the input frame
into high dimensions and learns the spatial structure
relationship of human body joints. Given a series of
two-dimensional joint coordinates, F = {f1, f2, .., fJ},
where J represents the number of joint points, and each
joint point contains two dimensions x and y, we increase
the number of coordinate features to 32 dimensions
through a fully connected layer to improve the repre-
sentative ability. The STE then learns the dependencies
and correlations of body joints as:

F1 = GELU(w1x+ b1) (1)

F2 = Dropout(w2F1 + b2) (2)

Where GELU is the activation function, w1 repre-
sents the characteristics of each joint point of input.

3.2 Multi-Granularity Temporal
Transformer

The multi-granularity temporal transformer is designed
based on two observations: (1) in a video sequence,
different body joints usually have different moving tra-
jectories. (2) the motion of a joint has an impact on
adjacent or related joints. Following the observation, we
propose to handle the temporal correlation of human
body joints at different granularity, i.e., modeling tem-
poral dependencies of each single joints separately and
multiple joints altogether across multiple frames. To this
end, we propose a holistic temporal transformer (HTT)
and a joint tracing temporal transformer (JTTT).

Holistic Temporal Transformer. HTT uses one-
dimensional convolution to learn the temporal relation-
ship between frames of a certain length, which reduces
the dimension of the joint feature C ∈ RJ×32 generated
by STE to dim = 256. The transformer uses multi-head
attention to model the frame sequence, and a strid-
den convolution is added to the module to reduce the

redundancy of input frames. For training different num-
bers of input frames, the stridden Convolution size is
set differently. The residual layer uses max-pooling to
retain the main feature information, and HTT adopts
the training method of multiple inputs and a single out-
put to collect 3D attitude information in the center
frame comprehensively.

Joint Tracing Temporal Transformer. The
JTTT encodes the motion relationship between joints
by using a double-branch parallel method to supple-
ment features and independent learning does not affect
each other. A series of video frames L = {l1, l2, .., lN}
are input into the STE module. Based on the joint fea-
ture information T ∈ RJ×N×32 generated by STE, we
compress the dimensions by adjusting the joint coding
dimension to 256 dimensions to obtain frame vector fea-
tures E. We then use a self-attention mechanism to deal
with the dependence of arbitrary length sequences and
capture remote information to learn joint motion fea-
tures. Finally, the JTTT model is used to obtain the
output joint characteristic information I ∈ R1×J×256.

JTTT and HTT complementarily learn long-term
and short-term temporal characteristics in parallel.
Given the joint information C ∈ RN×32 of all frames
learned by STE, where N is the number of input video
frames, an aggregation vector function is utilized to
aggregate all feature information of the same joint point.
Since the aggregated feature dimension reaches 10000
levels, resulting in high computational complexity, so
by using one-dimensional convolution to compress the
feature dimension to 256, and the compressed feature
dimension T ∈ RN×256. This approach allows JTTT to
independently learn the temporal characteristics of each
key point of the central frame from a higher dimension,
while enabling HTT to learn sequence information of the
entire joints with highly fused features, capturing more
implicit relationships. As a result, the 3D feature infor-
mation of the central frame becomes more abundant.
The formula is defined as:

Zµ = MSA1(LN(Zℓ)) + Zℓ (3)

Y∂ = FFN1(Zµ) (4)

Z∅ = MSA2(LN(Zℓ)) + Zℓ (5)

Yβ = FFN2(Z∅) (6)

A = FFN3(Concat(Y∂ , Yβ)) (7)

In Equation 3, Zℓ represents the spatial posture fea-
ture generated by STE for a single frame, Zµ denotes the
sequence frame feature vector generated by the atten-
tion mechanism in HTT, and in Equation 5, similarly Z∅
represents the node temporal feature vector generated
by the attention mechanism network in JTTT.

FFN1 and FFN2 represent feedforward neural net-
works with different numbers of convolutional kernels.
To better fuse the features, concatenate is used to join
them together, and the FFN3 network is used to aggre-
gate and generate the posture features of the target
frame.

3.3 Overall Loss Function

To train our proposed multi-granularity transformer for
human pose estimation, we use Mean Per Joint Position
Error (MPJPE) as our overall loss function to minimize
the error between all predicted 3D joint coordinates and
ground truth attitude coordinates:

L =
1

J

J∑
k=1

∥Yk − Ŷk∥2, (8)

Where Yk represents the 3D joint coordinates of the kth
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Fig. 2 The overall pipeline of MOTT. MOTT takes a 2D observation sequence as input. The spatial embeddings are first encoded by a
spatial Transformer and then fed to a dual temporal Transformer, named a multi-granularity temporal Transformer. Then holistic and
local branches are designed to model complicated temporal dependencies elaborately. The outputs of dual branches are fused to obtain
the final prediction. The N1× represents the layer depth of HTT, and N2× denotes the layer depth of JTTT.

ground truth joint, Ŷk represents the estimated coordi-
nate of the kth joint. The loss function L aggregates all
joint coordinate errors and calculates the average value.

3.4 Network Architecture

The above (Fig. 2) illustrates the framework of the
2D-3D pose regression network model, encompassing
its structural composition and design pattern. Detailed
descriptions of several modules are provided below.

Spatial Transformer Encoder. Given a series of
2D joint coordinates generated by CPN [2] generator
or real 2D joint coordinates, the spatial transformer
encoder (STE) utilizes a fully connected layer to elevate
the dimension to 32. Subsequently, it incorporates learn-
able position encoding into the respective joint encoding,
thereby creating a joint encoding feature denoted as C.

Holistic Temporal Transformer. The holistic
temporal transformer (HTT), based on the output fea-
tures of STE, utilizes one-dimensional convolution to
convert high-dimensional features into low-dimensional
ones S and employs positional information for time
series modeling. To reduce redundancy between frames,
a technique involving the addition of strides is utilized.

Joint Tracing Temporal Transformer. To cap-
ture the temporal dynamics between individual joints,
a one-dimensional convolution is employed to increase
the dimensionality of the low-dimensional features out-
putted by STE to 256 dimensions. The transformer
architectures of both JTTT and HTT are similar, as they
both utilize temporal information to learn and output
features G ∈ RJ×1×256 of the central frame.

Regression Head. To regress the multi-granularity
temporal features to 3D pose coordinates of the cen-
ter frame. This framework adopts a parallel mode and
concatenates the outputs of HTT and JTTT to pro-
duce a H ∈ R1×256. Then a one-dimensional convolution
operates on it and produces a Y ∈ RJ×3.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

The Human3.6M dataset is widely used for indoor
3D human pose estimation [32]. This dataset captures
four camera views of actors performing various actions,
including sitting, smoking, and walking. The dataset
provides video sequences and corresponding 2D and
3D pose coordinates. Following previous works [3, 8],

actors S1, S5, S6, S7, and S8 are included in the train-
ing set, while actors S9 and S11 are divided into the
test sets. We evaluate the performance of our approach
using two criteria: MPJPE and the aligned MPJPE
(P-MPJPE). MPJPE calculates the average Euclidean
distance (in millimeters) between predicted joints and
real 3D joints, as detailed in protocol #1. P-MPJPE
computes MPJPE using real 3D joint coordinates after
applying rigid body transformation, such as translation,
rotation, and scaling, to the output joint coordinates,
as outlined in protocol #2. The MPI-INF-3DHP [33]
dataset has both indoor and outdoor pose information,
providing a broader perspective with action shots cap-
tured from 14 different angles. It consists of 8 actors,
evenly split between male and female, each wearing two
different outfits and performing 8 distinct movements,
in which each movement lasts about one minute. The
dataset contains real 3D coordinate information, and the
experiments are divided according to [11], using MPJPE,
percentage of correct key points (PCK) within 150mm,
and area under the curve (AUC) evaluation metric.

4.2 Implementation Details

The model is implemented by the PyTorch framework
and is trained on four NVIDIA GeForce RTX 3090
GPUs. We set the depth of the STE to 2, and each joint
point dimension channel to 32, which corresponds to
N1×=3 in JTTT and N2×=3 in HTT. During training,
a batch size of 160 is used, and the initial learning rate
is set to 0.01 with a decay rate per round of 0.95. A large
decay is applied every five rounds, and the total num-
ber of epochs is set to 100. Adam with a weight decay
of 1×10−6 is used. Additionally, we experimented with
two activation functions, RELU and GLUE, and com-
pared the results from both quantitative and qualitative
perspectives. The lengths of input sequences following
[10, 11] set to 27, 81, 243, and 351. To generate the 2D
pose coordinates, we use a pre-trained CPN [37]. Dur-
ing training, the inputs consist of ground-truth 2D pose
coordinates, while during testing, they generate 2D pose
coordinates.

4.3 Baselines

We compare MOTT with twelve previous methods [2–
11, 13–16, 23, 26, 34]. These methods include single-
frame input and multi-frame input, in which [6, 13, 15,
16, 23] are based on monocular-pose estimation, and [2–
5, 7–11, 26, 34] are based on video-pose estimation. For a
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Table 1 Comparison experiments on Human3.6M based on protocol #1. The red color and the blue color denote the best
results and the second best results.

Protocol #1 Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WaklT. Avg.

Martinez et al. [13] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Fang et al. [14] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Lee et al. [15] ECCV’18 † 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Cai et al. [2] ICCV’19 † 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 37.1 37.1 39.4 48.8

Pavllo et al. [3] CVPR’19 † 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Lin et al. [4] BMVC’19 † 42.5 44.8 42.6 44.2 48.5 57.1 42.6 41.4 56.5 64.5 47.4 43.0 48.1 33.0 35.1 46.6

Xu et al. [6] CVPR’20 † 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6

Liu et al. [7] CVPR’20 † 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.2 45.1

Zeng et al. [16] ECCV’20 † 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8

Wang et al. [5] ECCV’20 † 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5

Chen et al. [34] TCSVT’21 † 41.4 43.5 40.1 42.9 46.6 51.9 41.8 42.3 53.9 60.2 45.4 41.7 46.0 31.5 32.7 44.1

Li et al. [10] TMM’22 40.3 43.3 40.2 42.3 45.6 52.3 41.8 40.5 55.9 60.6 44.2 43.0 44.2 30.0 30.2 43.7

Yu et al. [35] ICCV’23 41.3 44.3 40.8 41.8 45.9 54.1 42.1 41.5 57.8 62.9 45.0 42.8 45.9 29.4 29.9 44.4

MOTT † 39.0 43.1 37.3 40.5 44.3 51.8 40.4 40.4 56.3 59.2 44.2 42.0 42.2 28.5 29.5 42.6

Table 2 Comparison experiments on Human3.6M based on protocol #2.

Protocol #2 Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WaklT. Avg.

Martinez et al. [13] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 45.0 38.0 43.1 47.7

Pavlakos et al. [21] CVPR’18 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Cai et al. [2] ICCV’19 † 35.5 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Lin et al. [4] BMVC’19 † 32.5 35.3 34.3 36.2 37.8 43.0 33.0 32.2 45.7 51.8 38.4 32.8 37.5 25.8 28.9 36.8

Pavllo et al. [3] CVPR’19 † 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Xu et al. [6]CVPR’20 † 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2

Liu et al. [7]CVPR’20 † 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

Wang et al. [5] ECCV’20 † 32.9 35.2 35.6 34.4 36.4 42.7 31.2 32.5 45.6 50.2 37.3 32.8 36.3 26.0 23.9 35.5

Wang et al. [34] TCSVT’21 32.6 35.1 32.8 35.4 36.3 40.4 32.4 32.3 42.7 49.0 36.8 32.4 36.0 24.9 26.5 35.0

Zheng et al. [8] ICCV’21 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6

Li et al. [10] TMM’2022 32.7 35.5 32.5 35.4 35.9 41.6 33.0 31.9 45.1 50.1 36.3 33.5 35.1 23.9 25.0 35.2

Yu et al. [35] ICCV’23 32.4 35.3 32.6 34.2 35.0 42.1 32.1 31.9 45.5 49.5 36.1 32.4 35.6 23.5 24.7 34.8

MOTT † 32.0 35.6 30.9 33.7 35.5 41.2 32.4 31.8 45.2 48.3 36.4 32.8 34.4 23.2 24.4 34.5

Table 3 Comparison experiments on Human3.6M based on protocol #1 with 2D ground-truth.

GT Protocol#1 Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WaklT. Avg.

Pavllo et al. [3] CVPR’19 35.2 40.2 32.7 28.6 38.2 45.5 40.6 36.1 48.8 47.3 37.8 39.7 38.7 27.8 29.5 37.8

Liu et al. [7] CVPR’20 34.5 37.1 33.6 34.2 32.9 37.1 39.6 35.8 40.7 41.4 33.0 33.8 33.0 26.6 26.9 34.7

Zeng et al. [16] ECCV’20 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0

Zheng et al. [8] ICCV’21 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3

Li et al. [9] CVPR’22 27.7 32.1 29.1 28.9 30.0 33.9 33.0 31.2 37.0 39.3 30.0 31.0 29.4 22.2 23.0 30.5

Ma et al. [26] ICMEW’22 29.4 30.1 27.5 27.4 30.5 32.8 32.3 29.5 33.4 37.0 29.6 29.1 29.2 23.9 24.5 29.8

San et al. [11] ECCV’22 28.5 30.1 28.6 27.9 29.8 33.2 31.3 27.8 36.0 37.4 29.7 29.5 28.1 21.0 21.0 29.3

Zhang et al. [36] CCDC’23 27.5 31.1 30.1 29.5 30.4 34.6 32.9 30.2 37.1 38.9 30.8 30.2 29.6 22.2 22.9 30.5

MOTT † 25.6 27.3 25.6 25.4 27.8 30.3 28.5 24.9 35.8 37.2 27.5 27.8 24.8 18.5 19.7 27.1

fair comparison, the inputs of the methods are 2d human
body joint coordinates estimated by CPN [37] in Table
1 and 2. To address the uncertainty of input 2d coordi-
nates, we used ground-truth 2D coordinates as input for
comparison methods in Table 3.

4.4 Comparison Quantitative Results

Referring to previous methods [9–11], we verified the
performance of MOTT on the two challenging datasets,
Human3.6M and MPI-INF-3DHP.

Table 4 Model performance and model size on Human3.6M
based on protocol #1.

Method Params(M) MPJPG (↓)

Zhang et al. [12] CVPR’22 33.7 42.4

Li et al. [9] CVPR’22 31.5 43.0

MOTT 8.9 42.6

Results on Human3.6M. Table 1 and Table 2
document the qualitative experimental results of differ-
ent methods on the Human3.6M dataset when using the
2D coordinates generated by CPN. Table 3 records the
experimental results when using real 2D coordinates as

input. By comparing the data, it is observed that in
Table 3, the MOTT method reduces the average error
rate from 30.5 millimeters to 27.1 millimeters. For spe-
cific actions, there are significant increases in accuracy,
with WalkDog increasing by 11.7%, Eating by 10.8%,
Directions by 7%, and Discussions by 10%. Addition-
ally, in both Table 1 and Table 2, the MOTT method
outperforms baseline methods, indicating a significant
improvement for simpler actions but less prominent
improvements for more complex actions.

Furthermore, we compare the model parameter size
and performance with some newer techniques with bet-
ter results, as shown in Table 4. In cases where there
is little difference in accuracy, our method has signif-
icantly fewer model parameters compared to others.
MOTT achieves outstanding performance with a rela-
tively lightweight model.

Results on MPI-INF-3DHP. We conducted
experiments against the state-of-the-art on MPI-INF-
3DHP dataset, as shown in Table 5. From the table,
MOTT achieves a significant improvement over the
method, San et al., with the second-best results on
MPJPE, outperforming by 10.3%. Since the sequence
length in MPI-INF-3DHP is shorter than that in the
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Human3.6M dataset, MOTT has a promising gener-
alization capability in tackling datasets with different
sequence lengths.

Table 5 Quantitative Comparison Results on MPI-INF-3DHP.

Method PCK AUC MPJPE

Mehta et al. [38] 3DV’17 (F=1) 75.7 39.3 117.6

Pavllo et al. [3] CVPR’19 (F=81) 86.0 51.9 84.0

Lin and Lee. [4] BMVC’19 (F=25) 83.6 51.4 79.8

Zeng et al. [16] ECCV’20 (F=1) 77.6 43.8 -

Wang et al. [5] ECCV’20 (F=96) 86.9 62.1 68.1

Zheng et al. [8] ICCV’21 (F=9) 88.6 56.4 77.1

Chen et al. [34] TCSVT’21 (F=81) 87.9 54.0 78.8

San et al. [11] ECCV’22 (F=81) 97.9 75.8 32.2

Zhang et al. [36] CCDC’23 (F=81) 97.9 75.3 32.8

MOTT (F=81) 97.4 77.2 28.9

4.5 Ablation Study

The MOTT model consists of multiple components and
modules. To verify the effectiveness of each component,
we conducted the following experiments.

Effect of Multi-Granularity Temporal Trans-
former. The multi-granularity joint tracing trans-
former contains three components: the spatial trans-
former encoder (STE), the holistic temporal transformer
(HTT), and the joint-tracing temporal transformer
(JTTT). Using an input sequence of 81 frames, we study
the influence of each component module on the over-
all structure. As shown in Table 6, MPJPE, Params,
and Flops were used as evaluation indicators. To demon-
strate the effectiveness of each module, we first compare
an individual HTT module with a combined HTT and
STE module. The results show that MPJPE decreases
from 45.94 mm to 45.52 mm, with a 2.4% improvement
in the prediction accuracy of the center frame. This
indicates that the addition of STE is effective in learn-
ing the spatial topology information of the human body
structure.

Table 6 Ablation studies on network components of MOTT.

STE HTT JTTT Params(M) FLOPs(G) MPJPE (↓)

×
√

× 4.62 133.34 45.94
√ √

× 4.64 136.95 45.52

×
√ √

7.99 139.62 45.31
√ √ √

8.00 143.23 44.67

Similarly, to demonstrate the effectiveness of the
JTTT module, we incorporate the JTTT module into
the HTT base block, improving the model’s MPJPE
accuracy to 45.31. Finally, the three modules are inte-
grated. From 6, it can be observed that the error rate of
the combined model structure is reduced from 45.94 mm
to 44.67 mm, with an accuracy improvement of 1.9%.
Such controlled variable experiments effectively demon-
strate the effectiveness of each module’s integration in
predicting temporal video frames.

Architecture Parameter Analysis. The selection
and design of model parameters are vital to the perfor-
mance of our model. As shown in Table 7, we discuss the
impact of the number of layers of JTTT (N2×), depth of
HTT (N1×), feature dimension of a single frame (embed-
ding), the number of hidden layer channels (channels),
the encoding feature dimension of JTTT (Dhid) on the
model effect. In Table 7, bold red color represents the
best result, and denote bold green color represents the
worst result.

Table 7 Ablation study on different parameters of MOTT. We
report the MPJPE.

Group N2× N1× Embeddim Channel Dhid MPJPE

1

1 2 32 256 512 45.58

2 2 32 256 512 45.22

3 2 32 256 512 44.67

4 2 32 256 512 45.52

5 2 32 256 512 44.78

6 2 32 256 512 45.07

2

3 1 32 256 512 45.25

3 2 32 256 512 44.67

3 3 32 256 512 45.35

3 4 32 256 512 45.29

3 5 32 256 512 45.67

3

3 2 32 256 512 44.67

3 2 32 512 1024 44.74

3 2 32 512 2048 44.62

4

3 2 64 256 512 44.97

3 2 64 512 1024 45.05

3 2 64 512 2048 45.20

5

3 2 128 256 512 45.59

3 2 128 512 1024 44.71

3 2 128 512 2048 44.79

6

3 2 256 256 512 44.90

3 2 256 512 1024 45.12

3 2 256 512 2048 44.95

In the first set of parameter configurations, exper-
imental results indicate that MOTT achieves optimal
performance when N2×* is set to 3. Therefore, we fix
N1×)* to 3 for the subsequent parameter analysis. To
discuss the effectiveness of the depth, we analyze the
performance of the MPJPE metric in the second set of
experiments. We observe that the predicted 3D coor-
dinates have the highest accuracy by setting Depth=2.
From the third through sixth sets of experiments, we
focus on testing the number of embedded channels and
the dimension of joint points. MOTT performs best
when the embedding size is set to 32 and the channel
to 256. From the table, The optimum prediction result
is 44.67 mm, and the error rate of the most unreason-
able parameters in the first group is 45.59 mm, which
improves the performance by 2.0%.

Impact of the Number of Frames. Unlike single-
frame pose estimation, the number of input frames in
video pose estimation is critical. To verify the effec-
tiveness of the number of frames, we conducted experi-
ments using varying numbers of input frames. Utilizing
CPN [37] and ground-truth 2D sequences with differ-
ent lengths, we evaluated the Mean Per Joint Position
Error (MPJPE). The input 2D pose coordinates are
obtained in two ways: one is generated by the CPN net-
work as a pose generator, and the other is the actual 2D
coordinates.

From Table 8, the accuracy rate of 81 frames is higher
than that of 27 frames, and the error rate of 243 frames
is also lower than that of 81 frames. MOTT achieves its
best performance with 351 frames, demonstrating that
MOTT has a solid ability to capture the correlation
between long sequences of frames.

Table 8 Ablation study on inputs of MOTT.

Frames 27 81 243 351

w/ CPN detections 46.0 44.7 43.5 42.6

w/ gt 2D observations 36.2 33.62 28.0 27.1

4.6 Qualitative Results

Attention Visualization. We present attention visu-
alization [10, 11] information of MOTT on subject S9 in
the Human3.6M dataset. The visualization of multi-head
self-attention intuitively displays the regions and parts
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   Head0

   Head2   Head3   Head2

   Head1   Head0    Head1    Head0      Head1

   Head7   Head6   Head7   Head6   Head7   Head6

   Head5   Head4   Head5   Head4   Head5   Head4

   Head3   Head2   Head3

ST HTTJTTT

Fig. 3 Visualization of attention map of MOTT. We visualize the dependencies encoded by spatial transformer encoder (STE), holistic
temporal transformer (HTT), and joint tracing temporal transformer (JTTT).

Directions Strided Ours GT Greeting Strided Ours GT

Sitting Strided Ours GT Walking Strided Ours GT

Fig. 4 Qualitative evaluation on Human3.6M. We compare the proposed MOTT against Strided Transformer [10] with four different
actions. The input images, results of Strided Transformer, Our results, and the ground-truth 3D poses are shown side by side.
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Fig. 5 Qualitative results on in-the-wild videos. We collect about 30 in-the-wild videos to evaluate the performance of our method in
such an extreme case. It demonstrates that our MOTT performs well on this data.

that the model pays attention to. In Fig. 3, the 8 Heads
in the STE part respectively represent the attention to
the 17 joint points of the human body, with the x-axis
representing the order of the joint points and the y-axis
representing the weight of attention. We observe that
heatmap 0 is mainly concentrated in 0 (Hip), 8 (thorax),
9 (neck), 10 (head), 11 (left-shoulder), 12 (left-elbow), 13
(left-wrist), 14 (right-shoulder), among others. Heatmap
2 focuses on several repeated concerns such as the 14
(right-shoulder), 15 (right-bow), and 16 (right-wrist).
Heatmap 0 and heatmap 2 learn the key to the upper
body of the human body’s local correlation of points,
similarly, heatmap 4 and heatmap 6 focus on joint points
in the lower body such as the right-hip (1), right-knee
(2), right-foot (3), left-hip (4), left-knee (5), and left-foot
(6). The HTT module mainly focuses on the influence
of surrounding frames on the center frame. The weight
assignments after Transformer learning in different mod-
ules are visualized separately. The x-axis represents the
input frame, and the y-axis represents the influence
weight of adjacent frames. In the experiment, 351 frames
are used as input frames, and the center of gravity of the
heatmap is concentrated around the target frame. The
JTTT module models the sequence of the same node
learns the spatial structure features of the target out-
put frame and pays attention to the pose features of the
current node.

Dataset Visualization. To observe the perfor-
mance of the model on different datasets, we conducted a

qualitative comparison between MOTT and the current
advanced methods. Fig. 4 shows that on the Human3.6M
dataset, different methods are applied to the same
dynamic prediction. Additionally, to verify the gener-
alization of models to the wild dataset, we collected
multiple daily action videos such as dancing, martial
arts, badminton, etc. As shown in Fig. 5, the estimations
of MOTT are closer to the truth than the baselines. For
a fair comparison, we utilized CPN [37] as the 2D Pose
generator.

5 Conclusion

In this work, we present a multi-granularity joint trac-
ing Transformer (MOTT) approach based on 2D-3D
lifting for 3D human pose estimation. It considers the
body-joint correlation in video frames from multiple
granularities, i.e., the temporal correlation of holistic
body joints and each single body joint. We design a
multi-granularity temporal Transformer that models the
holistic temporal relationship of all body joints and the
local temporal relationship of every single joint from 2D
image sequences. Extensive experimental results demon-
strate the effectiveness of MOTT and indicate that the
multi-granularity temporal Transformer is effective for
human pose estimation.
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